These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 23889080)

  • 1. Excess thermopower and the theory of thermopower waves.
    Abrahamson JT; Sempere B; Walsh MP; Forman JM; Sen F; Sen S; Mahajan SG; Paulus GL; Wang QH; Choi W; Strano MS
    ACS Nano; 2013 Aug; 7(8):6533-44. PubMed ID: 23889080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of chemical fuel composition on energy generation from thermopower waves.
    Yeo T; Hwang H; Jeong DC; Lee KY; Hong J; Song C; Choi W
    Nanotechnology; 2014 Nov; 25(44):445403. PubMed ID: 25319506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wavefront velocity oscillations of carbon-nanotube-guided thermopower waves: nanoscale alternating current sources.
    Abrahamson JT; Choi W; Schonenbach NS; Park J; Han JH; Walsh MP; Kalantar-Zadeh K; Strano MS
    ACS Nano; 2011 Jan; 5(1):367-75. PubMed ID: 21182252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Giant Peak Voltage of Thermopower Waves Driven by the Chemical Potential Gradient of Single-Crystalline Bi
    Singh S; Mun H; Lee S; Kim SW; Baik S
    Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28640460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage amplification of thermopower waves via current crowding at high resistances in self-propagating combustion waves.
    Yeo T; Hwang H; Cho Y; Shin D; Choi W
    Nanotechnology; 2015 Jul; 26(30):305402. PubMed ID: 26159116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemically driven carbon-nanotube-guided thermopower waves.
    Choi W; Hong S; Abrahamson JT; Han JH; Song C; Nair N; Baik S; Strano MS
    Nat Mater; 2010 May; 9(5):423-9. PubMed ID: 20208525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced thermopower wave in novel ZnO nanostructures/fuel composite.
    Lee KY; Hwang H; Choi W
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15575-82. PubMed ID: 25133980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the effect of the structure of large-area carbon nanotube/fuel composites on energy generation from thermopower waves.
    Hwang H; Yeo T; Um JE; Lee KY; Kim HS; Han JH; Kim WJ; Choi W
    Nanoscale Res Lett; 2014; 9(1):536. PubMed ID: 25285059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ZnO based thermopower wave sources.
    Walia S; Weber R; Balendhran S; Yao D; Abrahamson JT; Zhuiykov S; Bhaskaran M; Sriram S; Strano MS; Kalantar-zadeh K
    Chem Commun (Camb); 2012 Aug; 48(60):7462-4. PubMed ID: 22728449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase Transformations of Cobalt Oxides in CoxOy-ZnO Multipod Nanostructures via Combustion from Thermopower Waves.
    Lee KY; Hwang H; Choi W
    Small; 2015 Sep; 11(36):4762-73. PubMed ID: 26136292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and Evaluation of Hybrid Composites of Chemical Fuel and Multi-walled Carbon Nanotubes in the Study of Thermopower Waves.
    Hwang H; Yeo T; Cho Y; Shin D; Choi W
    J Vis Exp; 2015 Apr; (98):. PubMed ID: 25938793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulation of combustion waves in carbon-nanotube/fuel composites by highly reactive Mg nanoparticles.
    Lee KY; Hwang H; Shin D; Choi W
    Nanoscale; 2015 Oct; 7(40):17071-8. PubMed ID: 26419765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermopower Wave-Driven Hybrid Supercapacitor Charging System.
    Shin D; Hwang H; Yeo T; Seo B; Choi W
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31042-31050. PubMed ID: 27797172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible power fabrics made of carbon nanotubes for harvesting thermoelectricity.
    Kim SL; Choi K; Tazebay A; Yu C
    ACS Nano; 2014 Mar; 8(3):2377-86. PubMed ID: 24517397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoelectric-pyroelectric hybrid energy generation from thermopower waves in core-shell structured carbon nanotube-PZT nanocomposites.
    Yeo T; Hwang H; Shin D; Seo B; Choi W
    Nanotechnology; 2017 Feb; 28(6):065403. PubMed ID: 28052049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating electronic transport properties of carbon nanotubes to improve the thermoelectric power factor via nanoparticle decoration.
    Yu C; Ryu Y; Yin L; Yang H
    ACS Nano; 2011 Feb; 5(2):1297-303. PubMed ID: 21222461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoelectric transport properties in atomic scale conductors.
    Zheng X; Zheng W; Wei Y; Zeng Z; Wang J
    J Chem Phys; 2004 Nov; 121(17):8537-41. PubMed ID: 15511178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave-mediated heat transport in a quantum dot attached to leads.
    Chi F; Dubi Y
    J Phys Condens Matter; 2012 Apr; 24(14):145301. PubMed ID: 22410747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the resistivity and absolute thermoelectric power of disordered metals and alloys.
    Gasser JG
    J Phys Condens Matter; 2008 Mar; 20(11):114103. PubMed ID: 21694196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.