BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 23889447)

  • 1. Peptide pores in lipid bilayers: voltage facilitation pleads for a revised model.
    Fadda GC; Lairez D; Guennouni Z; Koutsioubas A
    Phys Rev Lett; 2013 Jul; 111(2):028102. PubMed ID: 23889447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanism of Peptide-induced pores in membranes.
    Huang HW; Chen FY; Lee MT
    Phys Rev Lett; 2004 May; 92(19):198304. PubMed ID: 15169456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimicrobial peptide alamethicin insertion into lipid bilayer: a QCM-D exploration.
    Wang KF; Nagarajan R; Camesano TA
    Colloids Surf B Biointerfaces; 2014 Apr; 116():472-81. PubMed ID: 24561501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial peptides in action.
    Leontiadou H; Mark AE; Marrink SJ
    J Am Chem Soc; 2006 Sep; 128(37):12156-61. PubMed ID: 16967965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The lipid dependence of antimicrobial peptide activity is an unreliable experimental test for different pore models.
    Bobone S; Roversi D; Giordano L; De Zotti M; Formaggio F; Toniolo C; Park Y; Stella L
    Biochemistry; 2012 Dec; 51(51):10124-6. PubMed ID: 23228161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of magainin and alamethicin in model membranes studied by x-ray reflectivity.
    Li C; Salditt T
    Biophys J; 2006 Nov; 91(9):3285-300. PubMed ID: 16920839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion channels of alamethicin dimer N-terminally linked by disulfide bond.
    Okazaki T; Sakoh M; Nagaoka Y; Asami K
    Biophys J; 2003 Jul; 85(1):267-73. PubMed ID: 12829482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of the antimicrobial peptide cyclo(RRWWRF) with membranes by molecular dynamics simulations.
    Appelt C; Eisenmenger F; Kühne R; Schmieder P; Söderhäll JA
    Biophys J; 2005 Oct; 89(4):2296-306. PubMed ID: 16040748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation.
    Chen FY; Lee MT; Huang HW
    Biophys J; 2003 Jun; 84(6):3751-8. PubMed ID: 12770881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial peptides in toroidal and cylindrical pores.
    Mihajlovic M; Lazaridis T
    Biochim Biophys Acta; 2010 Aug; 1798(8):1485-93. PubMed ID: 20403332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of peptide-induced pore formation in lipid bilayers investigated by oriented 31P solid-state NMR spectroscopy.
    Bertelsen K; Dorosz J; Hansen SK; Nielsen NC; Vosegaard T
    PLoS One; 2012; 7(10):e47745. PubMed ID: 23094079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiating antimicrobial peptides interacting with lipid bilayer: Molecular signatures derived from quartz crystal microbalance with dissipation monitoring.
    Wang KF; Nagarajan R; Camesano TA
    Biophys Chem; 2015 Jan; 196():53-67. PubMed ID: 25307196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclodextrin-scaffolded alamethicin with remarkably efficient membrane permeabilizing properties and membrane current conductance.
    Hjørringgaard CU; Vad BS; Matchkov VV; Nielsen SB; Vosegaard T; Nielsen NC; Otzen DE; Skrydstrup T
    J Phys Chem B; 2012 Jul; 116(26):7652-9. PubMed ID: 22676384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetics of pore formation induced by membrane active peptides.
    Lee MT; Chen FY; Huang HW
    Biochemistry; 2004 Mar; 43(12):3590-9. PubMed ID: 15035629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of alamethicin pores in DMPC bilayers.
    Constantin D; Brotons G; Jarre A; Li C; Salditt T
    Biophys J; 2007 Jun; 92(11):3978-87. PubMed ID: 17369412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of the Antimicrobial Peptide Aurein 1.2 and Charged Lipid Bilayer.
    Rai DK; Qian S
    Sci Rep; 2017 Jun; 7(1):3719. PubMed ID: 28623332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toroidal pores formed by antimicrobial peptides show significant disorder.
    Sengupta D; Leontiadou H; Mark AE; Marrink SJ
    Biochim Biophys Acta; 2008 Oct; 1778(10):2308-17. PubMed ID: 18602889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of Antimicrobial Peptide Potency in Stressed Lipid Bilayers.
    Losasso V; Hsiao YW; Martelli F; Winn MD; Crain J
    Phys Rev Lett; 2019 May; 122(20):208103. PubMed ID: 31172786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of head group and curvature on binding of the antimicrobial peptide tritrpticin to lipid membranes.
    Bozelli JC; Sasahara ET; Pinto MR; Nakaie CR; Schreier S
    Chem Phys Lipids; 2012 May; 165(4):365-73. PubMed ID: 22209923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.