BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 2388975)

  • 1. Sensitization versus tolerance to the dopamine turnover-elevating effects of haloperidol: the effect of regular/intermittent dosing.
    Csernansky JG; Bellows EP; Barnes DE; Lombrozo L
    Psychopharmacology (Berl); 1990; 101(4):519-24. PubMed ID: 2388975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interrelationships between plasma homovanillic acid and indices of dopamine turnover in multiple brain areas during haloperidol and saline administration.
    Csernansky JG; Barnes DE; Bellows EP; Lombrozo L
    Life Sci; 1990; 46(10):707-13. PubMed ID: 2314192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ontogeny of tolerance to haloperidol: behavioral and biochemical measures.
    Coyle S; Napier TC; Breese GR
    Brain Res; 1985 Nov; 355(1):27-38. PubMed ID: 4075104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bilateral neurochemical changes induced by unilateral cerebral haloperidol administration: evidence for cerebral asymmetry in the rat.
    Hyde JF; Jerussi TP
    Pharmacol Biochem Behav; 1992 Jul; 42(3):457-64. PubMed ID: 1409779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Striatal dopamine metabolism increases during long-term haloperidol administration in rats but shows tolerance in response to acute challenge with raclopride.
    See RE
    Neurosci Lett; 1991 Aug; 129(2):265-8. PubMed ID: 1720879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine release and metabolism in the rat frontal cortex, nucleus accumbens, and striatum: a comparison of acute clozapine and haloperidol.
    Karoum F; Egan MF
    Br J Pharmacol; 1992 Mar; 105(3):703-7. PubMed ID: 1628156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apomorphine-haloperidol interactions: different types of antagonism in cortical and subcortical brain regions.
    Bacopoulos NG; Roth RH
    Brain Res; 1981 Feb; 205(2):313-9. PubMed ID: 7470869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of scopolamine on the efflux of dopamine and its metabolites after clozapine, haloperidol or thioridazine.
    Meltzer HY; Chai BL; Thompson PA; Yamamoto BK
    J Pharmacol Exp Ther; 1994 Mar; 268(3):1452-61. PubMed ID: 8138957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional effects of neuroleptics on dopamine metabolism and dopamine-sensitive adenylate cyclase activity.
    Scatton B; Bischoff S; Dedek J; Korf J
    Eur J Pharmacol; 1977 Aug; 44(4):287-92. PubMed ID: 19266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effect of acute and chronic haloperidol administration on dopamine turnover in rat nigrostriatal and retinal dopaminergic neurons.
    Melamed E; Durst R; Frucht Y; Globus M
    Eur J Pharmacol; 1983 May; 89(3-4):279-82. PubMed ID: 6873163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine release and metabolism in nucleus accumbens and striatum of morphine-tolerant and nontolerant rats.
    Johnson DW; Glick SD
    Pharmacol Biochem Behav; 1993 Oct; 46(2):341-7. PubMed ID: 8265688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cocaine and footshock stress on extracellular dopamine levels in the ventral striatum.
    Sorg BA; Kalivas PW
    Brain Res; 1991 Sep; 559(1):29-36. PubMed ID: 1782559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Haloperidol given chronically decreases basal dopamine in the prefrontal cortex more than the striatum or nucleus accumbens as simultaneously measured by microdialysis.
    Hernandez L; Hoebel BG
    Brain Res Bull; 1989 Apr; 22(4):763-9. PubMed ID: 2736403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in dopamine metabolism after chronic administration of haloperidol. Possible role of increased autoreceptor sensitivity.
    Saller CF; Salama AI
    Neuropharmacology; 1985 Feb; 24(2):123-9. PubMed ID: 3990917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in locomotion and dopamine neurotransmission following amphetamine, haloperidol, and exposure to novel environmental stimuli.
    Bardo MT; Bowling SL; Pierce RC
    Psychopharmacology (Berl); 1990; 101(3):338-43. PubMed ID: 2163539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic neuroleptic treatment does not suppress the dynamic characteristics of the dopaminergic receptor D2 system.
    Andia I; Zumarraga M; Retuerto F; Zamalloa I; Davila R
    Prog Neuropsychopharmacol Biol Psychiatry; 1994 Jan; 18(1):181-91. PubMed ID: 7906895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithium dissociates haloperidol-induced behavioral supersensitivity from reduced dopac increase in rat striatum.
    Meller E; Friedman E
    Eur J Pharmacol; 1981 Nov; 76(1):25-9. PubMed ID: 7318921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopamine in the basal ganglia and benzodiazepine-induced sedation.
    Brose N; O'Neill RD; Boutelle MG; Fillenz M
    Neuropharmacology; 1988 Jun; 27(6):589-95. PubMed ID: 3419542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of haloperidol-induced increase in rat striatal or mesolimbic 3,4-dihydroxyphenylacetic acid and homovanillic acid by pretreatment with chronic methamphetamine.
    Toru M; Mataga N; Takashima M; Nishikawa T
    Psychopharmacology (Berl); 1981; 74(4):316-20. PubMed ID: 6794073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of repeated treatment with haloperidol and clozapine on dopamine release and metabolism in the striatum and the nucleus accumbens.
    Ichikawa J; Meltzer HY
    J Pharmacol Exp Ther; 1991 Jan; 256(1):348-57. PubMed ID: 1703232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.