These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23890277)

  • 1. Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping.
    Paulus S; Dupuis J; Mahlein AK; Kuhlmann H
    BMC Bioinformatics; 2013 Jul; 14():238. PubMed ID: 23890277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated interpretation of 3D laserscanned point clouds for plant organ segmentation.
    Wahabzada M; Paulus S; Kersting K; Mahlein AK
    BMC Bioinformatics; 2015 Aug; 16():248. PubMed ID: 26253564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Registration of spatio-temporal point clouds of plants for phenotyping.
    Chebrolu N; Magistri F; Läbe T; Stachniss C
    PLoS One; 2021; 16(2):e0247243. PubMed ID: 33630896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy analysis of a multi-view stereo approach for phenotyping of tomato plants at the organ level.
    Rose JC; Paulus S; Kuhlmann H
    Sensors (Basel); 2015 Apr; 15(5):9651-65. PubMed ID: 25919368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated analysis of barley organs using 3D laser scanning: an approach for high throughput phenotyping.
    Paulus S; Dupuis J; Riedel S; Kuhlmann H
    Sensors (Basel); 2014 Jul; 14(7):12670-86. PubMed ID: 25029283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel mesh processing based technique for 3D plant analysis.
    Paproki A; Sirault X; Berry S; Furbank R; Fripp J
    BMC Plant Biol; 2012 May; 12():63. PubMed ID: 22553969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An unmanned ground vehicle phenotyping-based method to generate three-dimensional multispectral point clouds for deciphering spatial heterogeneity in plant traits.
    Xie P; Ma Z; Du R; Yang X; Jiang Y; Cen H
    Mol Plant; 2024 Oct; 17(10):1624-1638. PubMed ID: 39277788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning Approaches to Improve Three Basic Plant Phenotyping Tasks Using Three-Dimensional Point Clouds.
    Ziamtsov I; Navlakha S
    Plant Physiol; 2019 Dec; 181(4):1425-1440. PubMed ID: 31591152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Accurate Skeleton Extraction Approach From 3D Point Clouds of Maize Plants.
    Wu S; Wen W; Xiao B; Guo X; Du J; Wang C; Wang Y
    Front Plant Sci; 2019; 10():248. PubMed ID: 30899271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pheno4D: A spatio-temporal dataset of maize and tomato plant point clouds for phenotyping and advanced plant analysis.
    Schunck D; Magistri F; Rosu RA; Cornelißen A; Chebrolu N; Paulus S; Léon J; Behnke S; Stachniss C; Kuhlmann H; Klingbeil L
    PLoS One; 2021; 16(8):e0256340. PubMed ID: 34407122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated method for phenotypic analysis of wheat based on multi-view image sequences: from seedling to grain filling stages.
    Sun S; Zhu Y; Liu S; Chen Y; Zhang Y; Li S
    Front Plant Sci; 2024; 15():1459968. PubMed ID: 39224846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Vision System for 3D Plant Phenotyping.
    Chaudhury A; Ward C; Talasaz A; Ivanov AG; Brophy M; Grodzinski B; Huner NPA; Patel RV; Barron JL
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):2009-2022. PubMed ID: 29993836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring crops in 3D: using geometry for plant phenotyping.
    Paulus S
    Plant Methods; 2019; 15():103. PubMed ID: 31497064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of airborne 3D point clouds regarding separation of vegetation in complex environments.
    Bulatov D; Stütz D; Hacker J; Weinmann M
    Appl Opt; 2021 Aug; 60(22):F6-F20. PubMed ID: 34612858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic Branch-Leaf Segmentation and Leaf Phenotypic Parameter Estimation of Pear Trees Based on Three-Dimensional Point Clouds.
    Li H; Wu G; Tao S; Yin H; Qi K; Zhang S; Guo W; Ninomiya S; Mu Y
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field phenotyping of grapevine growth using dense stereo reconstruction.
    Klodt M; Herzog K; Töpfer R; Cremers D
    BMC Bioinformatics; 2015 May; 16():143. PubMed ID: 25943369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MASPC_Transform: A Plant Point Cloud Segmentation Network Based on Multi-Head Attention Separation and Position Code.
    Li B; Guo C
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using high-throughput phenotype platform MVS-Pheno to reconstruct the 3D morphological structure of wheat.
    Li W; Wu S; Wen W; Lu X; Liu H; Zhang M; Xiao P; Guo X; Zhao C
    AoB Plants; 2024 Feb; 16(2):plae019. PubMed ID: 38660049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A graph-based approach for simultaneous semantic and instance segmentation of plant 3D point clouds.
    Mirande K; Godin C; Tisserand M; Charlaix J; Besnard F; Hétroy-Wheeler F
    Front Plant Sci; 2022; 13():1012669. PubMed ID: 36438118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaf Segmentation on Dense Plant Point Clouds with Facet Region Growing.
    Li D; Cao Y; Tang XS; Yan S; Cai X
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30366434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.