These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 23890289)
1. Establishment of erythroleukemic GAK14 cells and characterization of GATA1 N-terminal domain. Mukai HY; Suzuki M; Nagano M; Ohmori S; Otsuki A; Tsuchida K; Moriguchi T; Ohneda K; Shimizu R; Ohneda O; Yamamoto M Genes Cells; 2013 Oct; 18(10):886-98. PubMed ID: 23890289 [TBL] [Abstract][Full Text] [Related]
2. Contribution of GATA1 dysfunction to multi-step leukemogenesis. Shimizu R; Yamamoto M Cancer Sci; 2012 Dec; 103(12):2039-44. PubMed ID: 22937757 [TBL] [Abstract][Full Text] [Related]
3. Loss of the Gata1 gene IE exon leads to variant transcript expression and the production of a GATA1 protein lacking the N-terminal domain. Kobayashi E; Shimizu R; Kikuchi Y; Takahashi S; Yamamoto M J Biol Chem; 2010 Jan; 285(1):773-83. PubMed ID: 19854837 [TBL] [Abstract][Full Text] [Related]
11. Tumor necrosis factor alpha inhibits erythroid differentiation in human erythropoietin-dependent cells involving p38 MAPK pathway, GATA-1 and FOG-1 downregulation and GATA-2 upregulation. Buck I; Morceau F; Cristofanon S; Heintz C; Chateauvieux S; Reuter S; Dicato M; Diederich M Biochem Pharmacol; 2008 Nov; 76(10):1229-39. PubMed ID: 18805401 [TBL] [Abstract][Full Text] [Related]
12. A newly established megakaryoblastic/erythroid cell line that differentiates to red cells in the presence of erythropoietin and produces platelet-like particles. Tsuyuoka R; Takahashi T; Suzuki A; Sasaki Y; Nakamura K; Fukumoto M; Ohmori K; Ohno Y; Nakao K Stem Cells; 1995 Jan; 13(1):54-64. PubMed ID: 7719248 [TBL] [Abstract][Full Text] [Related]
13. GATA1 in Normal and Pathologic Megakaryopoiesis and Platelet Development. Takasaki K; Chou ST Adv Exp Med Biol; 2024; 1459():261-287. PubMed ID: 39017848 [TBL] [Abstract][Full Text] [Related]
14. Differential amplification of murine bipotent megakaryocytic/erythroid progenitor and precursor cells during recovery from acute and chronic erythroid stress. Sanchez M; Weissman IL; Pallavicini M; Valeri M; Guglielmelli P; Vannucchi AM; Migliaccio G; Migliaccio AR Stem Cells; 2006 Feb; 24(2):337-48. PubMed ID: 16144876 [TBL] [Abstract][Full Text] [Related]
15. Regulator of differentiation 1 (ROD1) binds to the amphipathic C-terminal peptide of thrombospondin-4 and is involved in its mitogenic activity. Sadvakassova G; Dobocan MC; Difalco MR; Congote LF J Cell Physiol; 2009 Sep; 220(3):672-9. PubMed ID: 19441079 [TBL] [Abstract][Full Text] [Related]
17. Loss of gata1 but not gata2 converts erythropoiesis to myelopoiesis in zebrafish embryos. Galloway JL; Wingert RA; Thisse C; Thisse B; Zon LI Dev Cell; 2005 Jan; 8(1):109-16. PubMed ID: 15621534 [TBL] [Abstract][Full Text] [Related]
18. GATA1 Is a Sensitive and Specific Nuclear Marker for Erythroid and Megakaryocytic Lineages. Lee WY; Weinberg OK; Pinkus GS Am J Clin Pathol; 2017 Apr; 147(4):420-426. PubMed ID: 28340113 [TBL] [Abstract][Full Text] [Related]
19. A potential activity of valproic acid in the stimulation of interleukin-3-mediated megakaryopoiesis and erythropoiesis. Liu B; Ohishi K; Yamamura K; Suzuki K; Monma F; Ino K; Nishii K; Masuya M; Sekine T; Heike Y; Takaue Y; Katayama N Exp Hematol; 2010 Aug; 38(8):685-95. PubMed ID: 20381581 [TBL] [Abstract][Full Text] [Related]
20. Blasts in transient leukaemia in neonates with Down syndrome differentiate into basophil/mast-cell and megakaryocyte lineages in vitro in association with down-regulation of truncated form of GATA1. Miyauchi J; Ito Y; Tsukamoto K; Takahashi H; Ishikura K; Sugita K; Miyashita T Br J Haematol; 2010 Mar; 148(6):898-909. PubMed ID: 20064153 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]