These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 23890326)
1. A new approach for prediction of tumor sensitivity to targeted drugs based on functional data. Berlow N; Davis LE; Cantor EL; Séguin B; Keller C; Pal R BMC Bioinformatics; 2013 Jul; 14():239. PubMed ID: 23890326 [TBL] [Abstract][Full Text] [Related]
2. A kinase inhibition map approach for tumor sensitivity prediction and combination therapy design for targeted drugs. Pal R; Berlow N Pac Symp Biocomput; 2012; ():351-62. PubMed ID: 22174290 [TBL] [Abstract][Full Text] [Related]
3. New tools for old drugs: Functional genetic screens to optimize current chemotherapy. Gerhards NM; Rottenberg S Drug Resist Updat; 2018 Jan; 36():30-46. PubMed ID: 29499836 [TBL] [Abstract][Full Text] [Related]
4. Beyond the limitation of targeted therapy: Improve the application of targeted drugs combining genomic data with machine learning. Miao R; Chen HH; Dang Q; Xia LY; Yang ZY; He MF; Hao ZF; Liang Y Pharmacol Res; 2020 Sep; 159():104932. PubMed ID: 32473309 [TBL] [Abstract][Full Text] [Related]
5. A Copula Based Approach for Design of Multivariate Random Forests for Drug Sensitivity Prediction. Haider S; Rahman R; Ghosh S; Pal R PLoS One; 2015; 10(12):e0144490. PubMed ID: 26658256 [TBL] [Abstract][Full Text] [Related]
6. An Integrated Approach to Anti-Cancer Drug Sensitivity Prediction. Berlow N; Haider S; Wan Q; Geltzeiler M; Davis LE; Keller C; Pal R IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(6):995-1008. PubMed ID: 26357038 [TBL] [Abstract][Full Text] [Related]
7. SCNrank: spectral clustering for network-based ranking to reveal potential drug targets and its application in pancreatic ductal adenocarcinoma. Liu E; Zhang ZZ; Cheng X; Liu X; Cheng L BMC Med Genomics; 2020 Apr; 13(Suppl 5):50. PubMed ID: 32241274 [TBL] [Abstract][Full Text] [Related]
8. Pan-Cancer Prediction of Cell-Line Drug Sensitivity Using Network-Based Methods. Pouryahya M; Oh JH; Mathews JC; Belkhatir Z; Moosmüller C; Deasy JO; Tannenbaum AR Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163005 [TBL] [Abstract][Full Text] [Related]
9. Evidence-Based Network Approach to Recommending Targeted Cancer Therapies. Kancherla J; Rao S; Bhuvaneshwar K; Riggins RB; Beckman RA; Madhavan S; Corrada Bravo H; Boca SM JCO Clin Cancer Inform; 2020 Jan; 4():71-88. PubMed ID: 31990579 [TBL] [Abstract][Full Text] [Related]
10. Ex vivo modelling of drug efficacy in a rare metastatic urachal carcinoma. Mäkelä R; Arjonen A; Härmä V; Rintanen N; Paasonen L; Paprotka T; Rönsch K; Kuopio T; Kononen J; Rantala JK BMC Cancer; 2020 Jun; 20(1):590. PubMed ID: 32576176 [TBL] [Abstract][Full Text] [Related]
11. Rapid identification and validation of novel targeted approaches for Glioblastoma: A combined ex vivo-in vivo pharmaco-omic model. Daher A; de Groot J Exp Neurol; 2018 Jan; 299(Pt B):281-288. PubMed ID: 28923369 [TBL] [Abstract][Full Text] [Related]
13. A method for predicting target drug efficiency in cancer based on the analysis of signaling pathway activation. Artemov A; Aliper A; Korzinkin M; Lezhnina K; Jellen L; Zhukov N; Roumiantsev S; Gaifullin N; Zhavoronkov A; Borisov N; Buzdin A Oncotarget; 2015 Oct; 6(30):29347-56. PubMed ID: 26320181 [TBL] [Abstract][Full Text] [Related]
14. Predicting breast cancer drug response using a multiple-layer cell line drug response network model. Huang S; Hu P; Lakowski TM BMC Cancer; 2021 May; 21(1):648. PubMed ID: 34059012 [TBL] [Abstract][Full Text] [Related]
15. Phenotypic drug screening and target validation for improved personalized therapy reveal the complexity of phenotype-genotype correlations in clear cell renal cell carcinoma. Schneider M; Schüler J; Höfflin R; Korzeniewski N; Grüllich C; Roth W; Teber D; Hadaschik B; Pahernik S; Hohenfellner M; Duensing S Urol Oncol; 2014 Aug; 32(6):877-84. PubMed ID: 24929890 [TBL] [Abstract][Full Text] [Related]
16. Intertumoral heterogeneity in patient-specific drug sensitivities in treatment-naïve glioblastoma. Skaga E; Kulesskiy E; Fayzullin A; Sandberg CJ; Potdar S; Kyttälä A; Langmoen IA; Laakso A; Gaál-Paavola E; Perola M; Wennerberg K; Vik-Mo EO BMC Cancer; 2019 Jun; 19(1):628. PubMed ID: 31238897 [TBL] [Abstract][Full Text] [Related]
17. Predictive Modeling of Anti-Cancer Drug Sensitivity from Genetic Characterizations. Rahman R; Pal R Methods Mol Biol; 2019; 1878():227-241. PubMed ID: 30378080 [TBL] [Abstract][Full Text] [Related]
18. Integrating Domain Specific Knowledge and Network Analysis to Predict Drug Sensitivity of Cancer Cell Lines. Kim S; Sundaresan V; Zhou L; Kahveci T PLoS One; 2016; 11(9):e0162173. PubMed ID: 27607242 [TBL] [Abstract][Full Text] [Related]
19. Functional oncogene signatures guide rationally designed combination therapies to synergistically induce breast cancer cell death. Guest ST; Kratche ZR; Irish JC; Wilson RC; Haddad R; Gray JW; Garrett-Mayer E; Ethier SP Oncotarget; 2016 Jun; 7(24):36138-36153. PubMed ID: 27153554 [TBL] [Abstract][Full Text] [Related]
20. Clinical drug response prediction from preclinical cancer cell lines by logistic matrix factorization approach. Emdadi A; Eslahchi C J Bioinform Comput Biol; 2022 Apr; 20(2):2150035. PubMed ID: 34923927 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]