These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 23891239)

  • 1. Design, construction and validation of a portable care system for the daily telerehabiliatation of gait.
    Giansanti D; Morelli S; Maccioni G; Brocco M
    Comput Methods Programs Biomed; 2013 Oct; 112(1):146-55. PubMed ID: 23891239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Portable kit for the assessment of gait parameters in daily telerehabilitation.
    Giansanti D; Morelli S; Maccioni G; Grigioni M
    Telemed J E Health; 2013 Mar; 19(3):224-32. PubMed ID: 23438362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward the integration of novel wearable step-counters in gait telerehabilitation after stroke.
    Giansanti D; Tiberi Y; Silvestri G; Maccioni G
    Telemed J E Health; 2009 Jan; 15(1):105-11. PubMed ID: 19199855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward the design of a wearable system for fall-risk detection in telerehabilitation.
    Giansanti D; Morelli S; Maccioni G; Costantini G
    Telemed J E Health; 2009 Apr; 15(3):296-9. PubMed ID: 19382869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced data consistency of a portable gait measurement system.
    Lin HI; Chiang YP
    Rev Sci Instrum; 2013 Nov; 84(11):114301. PubMed ID: 24289412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A portable gait assessment tool to record temporal gait parameters in SCI.
    Galen SS; Clarke CJ; Allan DB; Conway BA
    Med Eng Phys; 2011 Jun; 33(5):626-32. PubMed ID: 21288759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mechanized gait trainer for restoring gait in nonambulatory subjects.
    Hesse S; Uhlenbrock D; Werner C; Bardeleben A
    Arch Phys Med Rehabil; 2000 Sep; 81(9):1158-61. PubMed ID: 10987154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Telerehabilitation research: emerging opportunities.
    Winters JM
    Annu Rev Biomed Eng; 2002; 4():287-320. PubMed ID: 12117760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel, user-friendly step counter for home telemonitoring of physical activity.
    Giansanti D; Maccioni G; Macellari V; Mattei E; Triventi M; Censi F; Calcagnini G; Bartolini P
    J Telemed Telecare; 2008; 14(7):345-8. PubMed ID: 18852314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a portable gait rehabilitation system for home-visit rehabilitation.
    Yano H; Tanaka N; Kamibayashi K; Saitou H; Iwata H
    ScientificWorldJournal; 2015; 2015():849831. PubMed ID: 25945364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Jerusalem TeleRehabilitation System, a new low-cost, haptic rehabilitation approach.
    Sugarman H; Dayan E; Weisel-Eichler A; Tiran J
    Cyberpsychol Behav; 2006 Apr; 9(2):178-82. PubMed ID: 16640475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A home-care system for the telemonitoring and telerehabilitation of the hand incorporating interactive biofeedback.
    Morelli S; Maccioni G; Lanzetta M; Macellari V; Giansanti D
    J Telemed Telecare; 2008; 14(7):372-6. PubMed ID: 18852320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of medical intelligence in remote monitoring.
    Vassányi I; Kozmann G; Bánhalmi A; Végsö B; Kósa I; Dulai T; Tarjányi Z; Tuboly G; Cserti P; Pintér B
    Stud Health Technol Inform; 2011; 169():671-5. PubMed ID: 21893832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A monocular marker-free gait measurement system.
    Courtney J; de Paor AM
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):453-60. PubMed ID: 20144920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New wearable system for the step counting based on the codivilla-spring for daily activity monitoring in stroke rehabilitation.
    Giansanti D; Tiberi Y; Maccioni G
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4720-3. PubMed ID: 19163770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Home rehabilitation system supported by the safety model.
    Kuusik A; Sarna K; Reilent E
    Stud Health Technol Inform; 2013; 189():145-51. PubMed ID: 23739374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reference trajectory generation for rehabilitation robots: complementary limb motion estimation.
    Vallery H; van Asseldonk EH; Buss M; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):23-30. PubMed ID: 19211320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New wearable system for step-counting telemonitoring and telerehabilitation based on the Codivilla spring.
    Giansanti D; Tiberi Y; Silvestri G; Maccioni G
    Telemed J E Health; 2008 Dec; 14(10):1096-100. PubMed ID: 19119833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of a multiple-site intensive care unit telemedicine program on clinical and economic outcomes: an alternative paradigm for intensivist staffing.
    Breslow MJ; Rosenfeld BA; Doerfler M; Burke G; Yates G; Stone DJ; Tomaszewicz P; Hochman R; Plocher DW
    Crit Care Med; 2004 Jan; 32(1):31-8. PubMed ID: 14707557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aspects of human factors engineering in home telemedicine and telerehabilitation systems.
    Lathan CE; Kinsella A; Rosen MJ; Winters J; Trepagnier C
    Telemed J; 1999; 5(2):169-75. PubMed ID: 10908429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.