BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 23891312)

  • 1. Newtonian and non-Newtonian blood flow in coiled cerebral aneurysms.
    Morales HG; Larrabide I; Geers AJ; Aguilar ML; Frangi AF
    J Biomech; 2013 Sep; 46(13):2158-64. PubMed ID: 23891312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How do coil configuration and packing density influence intra-aneurysmal hemodynamics?
    Morales HG; Kim M; Vivas EE; Villa-Uriol MC; Larrabide I; Sola T; Guimaraens L; Frangi AF
    AJNR Am J Neuroradiol; 2011; 32(10):1935-41. PubMed ID: 21885712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A virtual coiling technique for image-based aneurysm models by dynamic path planning.
    Morales HG; Larrabide I; Geers AJ; San Román L; Blasco J; Macho JM; Frangi AF
    IEEE Trans Med Imaging; 2013 Jan; 32(1):119-29. PubMed ID: 23008248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear-thinning effects of hemodynamics in patient-specific cerebral aneurysms.
    Gambaruto A; Janela J; Moura A; Sequeira A
    Math Biosci Eng; 2013 Jun; 10(3):649-65. PubMed ID: 23906142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variability of hemodynamic parameters using the common viscosity assumption in a computational fluid dynamics analysis of intracranial aneurysms.
    Suzuki T; Takao H; Suzuki T; Suzuki T; Masuda S; Dahmani C; Watanabe M; Mamori H; Ishibashi T; Yamamoto H; Yamamoto M; Murayama Y
    Technol Health Care; 2017; 25(1):37-47. PubMed ID: 27497460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of non-newtonian behavior on hemodynamics of cerebral aneurysms.
    Fisher C; Rossmann JS
    J Biomech Eng; 2009 Sep; 131(9):091004. PubMed ID: 19725693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Realistic non-Newtonian viscosity modelling highlights hemodynamic differences between intracranial aneurysms with and without surface blebs.
    Hippelheuser JE; Lauric A; Cohen AD; Malek AM
    J Biomech; 2014 Nov; 47(15):3695-703. PubMed ID: 25446269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood flow in cerebral aneurysms: comparison of phase contrast magnetic resonance and computational fluid dynamics--preliminary experience.
    Karmonik C; Klucznik R; Benndorf G
    Rofo; 2008 Mar; 180(3):209-15. PubMed ID: 18278729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk.
    Xiang J; Tremmel M; Kolega J; Levy EI; Natarajan SK; Meng H
    J Neurointerv Surg; 2012 Sep; 4(5):351-7. PubMed ID: 21990529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood flow dynamics in saccular aneurysm models of the basilar artery.
    Valencia AA; Guzmán AM; Finol EA; Amon CH
    J Biomech Eng; 2006 Aug; 128(4):516-26. PubMed ID: 16813443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of stent configuration on cerebral aneurysm fluid dynamics.
    Babiker MH; Gonzalez LF; Ryan J; Albuquerque F; Collins D; Elvikis A; Frakes DH
    J Biomech; 2012 Feb; 45(3):440-7. PubMed ID: 22226405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.
    Ford MD; Nikolov HN; Milner JS; Lownie SP; Demont EM; Kalata W; Loth F; Holdsworth DW; Steinman DA
    J Biomech Eng; 2008 Apr; 130(2):021015. PubMed ID: 18412502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of stents and flow diverters on hemodynamics in idealized aneurysm models.
    Seshadhri S; Janiga G; Beuing O; Skalej M; Thévenin D
    J Biomech Eng; 2011 Jul; 133(7):071005. PubMed ID: 21823744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemodynamic impact of cerebral aneurysm endovascular treatment devices: coils and flow diverters.
    Goubergrits L; Schaller J; Kertzscher U; Woelken T; Ringelstein M; Spuler A
    Expert Rev Med Devices; 2014 Jul; 11(4):361-73. PubMed ID: 24918904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison among different high porosity stent configurations: hemodynamic effects of treatment in a large cerebral aneurysm.
    Roszelle BN; Nair P; Gonzalez LF; Haithem Babiker M; Ryan J; Frakes D
    J Biomech Eng; 2014 Feb; 136(2):021013. PubMed ID: 24337100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements.
    Rayz VL; Boussel L; Acevedo-Bolton G; Martin AJ; Young WL; Lawton MT; Higashida R; Saloner D
    J Biomech Eng; 2008 Oct; 130(5):051011. PubMed ID: 19045518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of flow diverter with low porosity on cerebral aneurysms: a numerical stimulative study].
    Huang QH; Yang PF; Zhang X; Shi Y; Shao XM; Liu JM
    Zhonghua Yi Xue Za Zhi; 2010 Apr; 90(15):1024-7. PubMed ID: 20646519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element modeling of embolic coil deployment: multifactor characterization of treatment effects on cerebral aneurysm hemodynamics.
    Babiker MH; Chong B; Gonzalez LF; Cheema S; Frakes DH
    J Biomech; 2013 Nov; 46(16):2809-16. PubMed ID: 24119679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical study of purely viscous non-Newtonian flow in an abdominal aortic aneurysm.
    Marrero VL; Tichy JA; Sahni O; Jansen KE
    J Biomech Eng; 2014 Oct; 136(10):101001. PubMed ID: 24769921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.