These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 23891516)
1. Combination therapy via oral co-administration of insulin- and exendin-4-loaded nanoparticles to treat type 2 diabetic rats undergoing OGTT. Chuang EY; Nguyen GT; Su FY; Lin KJ; Chen CT; Mi FL; Yen TC; Juang JH; Sung HW Biomaterials; 2013 Oct; 34(32):7994-8001. PubMed ID: 23891516 [TBL] [Abstract][Full Text] [Related]
2. Noninvasive imaging oral absorption of insulin delivered by nanoparticles and its stimulated glucose utilization in controlling postprandial hyperglycemia during OGTT in diabetic rats. Chuang EY; Lin KJ; Su FY; Mi FL; Maiti B; Chen CT; Wey SP; Yen TC; Juang JH; Sung HW J Control Release; 2013 Dec; 172(2):513-22. PubMed ID: 23702234 [TBL] [Abstract][Full Text] [Related]
3. Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery. Su FY; Lin KJ; Sonaje K; Wey SP; Yen TC; Ho YC; Panda N; Chuang EY; Maiti B; Sung HW Biomaterials; 2012 Mar; 33(9):2801-11. PubMed ID: 22243802 [TBL] [Abstract][Full Text] [Related]
4. Calcium depletion-mediated protease inhibition and apical-junctional-complex disassembly via an EGTA-conjugated carrier for oral insulin delivery. Chuang EY; Lin KJ; Su FY; Chen HL; Maiti B; Ho YC; Yen TC; Panda N; Sung HW J Control Release; 2013 Aug; 169(3):296-305. PubMed ID: 23195534 [TBL] [Abstract][Full Text] [Related]
5. Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Lin YH; Mi FL; Chen CT; Chang WC; Peng SF; Liang HF; Sung HW Biomacromolecules; 2007 Jan; 8(1):146-52. PubMed ID: 17206800 [TBL] [Abstract][Full Text] [Related]
6. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Makhlof A; Tozuka Y; Takeuchi H Eur J Pharm Sci; 2011 Apr; 42(5):445-51. PubMed ID: 21182939 [TBL] [Abstract][Full Text] [Related]
7. The glucose-lowering potential of exendin-4 orally delivered via a pH-sensitive nanoparticle vehicle and effects on subsequent insulin secretion in vivo. Nguyen HN; Wey SP; Juang JH; Sonaje K; Ho YC; Chuang EY; Hsu CW; Yen TC; Lin KJ; Sung HW Biomaterials; 2011 Apr; 32(10):2673-82. PubMed ID: 21256586 [TBL] [Abstract][Full Text] [Related]
8. pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: from mechanism to therapeutic applications. Sung HW; Sonaje K; Liao ZX; Hsu LW; Chuang EY Acc Chem Res; 2012 Apr; 45(4):619-29. PubMed ID: 22236133 [TBL] [Abstract][Full Text] [Related]
9. A new orally available glucagon-like peptide-1 receptor agonist, biotinylated exendin-4, displays improved hypoglycemic effects in db/db mice. Jin CH; Chae SY; Son S; Kim TH; Um KA; Youn YS; Lee S; Lee KC J Control Release; 2009 Feb; 133(3):172-7. PubMed ID: 18977255 [TBL] [Abstract][Full Text] [Related]
10. Folate-decorated PLGA nanoparticles as a rationally designed vehicle for the oral delivery of insulin. Jain S; Rathi VV; Jain AK; Das M; Godugu C Nanomedicine (Lond); 2012 Sep; 7(9):1311-37. PubMed ID: 22583576 [TBL] [Abstract][Full Text] [Related]
11. Intestinal mucosa permeability following oral insulin delivery using core shell corona nanolipoparticles. Li X; Guo S; Zhu C; Zhu Q; Gan Y; Rantanen J; Rahbek UL; Hovgaard L; Yang M Biomaterials; 2013 Dec; 34(37):9678-87. PubMed ID: 24016855 [TBL] [Abstract][Full Text] [Related]
12. Polyglutamic Acid Functionalization of Chitosan Nanoparticles Enhances the Therapeutic Efficacy of Insulin Following Oral Administration. Urimi D; Agrawal AK; Kushwah V; Jain S AAPS PharmSciTech; 2019 Feb; 20(3):131. PubMed ID: 30815757 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption. Rekha MR; Sharma CP J Control Release; 2009 Apr; 135(2):144-51. PubMed ID: 19331862 [TBL] [Abstract][Full Text] [Related]
15. Biological activity of AC3174, a peptide analog of exendin-4. Hargrove DM; Kendall ES; Reynolds JM; Lwin AN; Herich JP; Smith PA; Gedulin BR; Flanagan SD; Jodka CM; Hoyt JA; McCowen KM; Parkes DG; Anderson CM Regul Pept; 2007 Jun; 141(1-3):113-9. PubMed ID: 17292977 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of hepatic glucose metabolism via gluconeogenesis and glycogenolysis after oral administration of insulin nanoparticles. Woitiski CB; Neufeld RJ; Soares AF; Figueiredo IV; Veiga FJ; Carvalho RA Drug Dev Ind Pharm; 2012 Dec; 38(12):1441-50. PubMed ID: 22324290 [TBL] [Abstract][Full Text] [Related]
17. Biodistribution, pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: Oral delivery using pH-responsive nanoparticles vs. subcutaneous injection. Sonaje K; Lin KJ; Wey SP; Lin CK; Yeh TH; Nguyen HN; Hsu CW; Yen TC; Juang JH; Sung HW Biomaterials; 2010 Sep; 31(26):6849-58. PubMed ID: 20619787 [TBL] [Abstract][Full Text] [Related]
18. Oral delivery of an anti-diabetic peptide drug via conjugation and complexation with low molecular weight chitosan. Ahn S; Lee IH; Lee E; Kim H; Kim YC; Jon S J Control Release; 2013 Sep; 170(2):226-32. PubMed ID: 23747732 [TBL] [Abstract][Full Text] [Related]
19. Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs. Lin YH; Sonaje K; Lin KM; Juang JH; Mi FL; Yang HW; Sung HW J Control Release; 2008 Dec; 132(2):141-9. PubMed ID: 18817821 [TBL] [Abstract][Full Text] [Related]