BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 23891553)

  • 21. 3-Nitropropionic acid toxicity in hippocampus: protection through N-methyl-D-aspartate receptor antagonism.
    Karanian DA; Baude AS; Brown QB; Parsons CG; Bahr BA
    Hippocampus; 2006; 16(10):834-42. PubMed ID: 16897723
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A systematic review of methodology applied during preclinical anesthetic neurotoxicity studies: important issues and lessons relevant to the design of future clinical research.
    Disma N; Mondardini MC; Terrando N; Absalom AR; Bilotta F
    Paediatr Anaesth; 2016 Jan; 26(1):6-36. PubMed ID: 26530523
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resistance to kynurenic acid of the NMDA receptor-dependent toxicity of 3-nitropropionic acid and cyanide in cerebellar granule neurons.
    Fatokun AA; Smith RA; Stone TW
    Brain Res; 2008 Jun; 1215():200-7. PubMed ID: 18486115
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anaesthesia for the Growing Brain.
    Raviraj D; Engelhardt T; Hansen TG
    Curr Pharm Des; 2019; 25(19):2165-2170. PubMed ID: 31267863
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuroprotective effect of estrogen: role of nonsynaptic NR2B-containing NMDA receptors.
    Liu SB; Zhao MG
    Brain Res Bull; 2013 Apr; 93():27-31. PubMed ID: 23085545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neurodevelopmental implications of the general anesthesia in neonate and infants.
    Lee JH; Zhang J; Wei L; Yu SP
    Exp Neurol; 2015 Oct; 272():50-60. PubMed ID: 25862287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isoflurane and propofol block neurotoxicity caused by MK-801 in the rat posterior cingulate/retrosplenial cortex.
    Jevtović-Todorović V; Kirby CO; Olney JW
    J Cereb Blood Flow Metab; 1997 Feb; 17(2):168-74. PubMed ID: 9040496
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neurogenesis and developmental anesthetic neurotoxicity.
    Kang E; Berg DA; Furmanski O; Jackson WM; Ryu YK; Gray CD; Mintz CD
    Neurotoxicol Teratol; 2017; 60():33-39. PubMed ID: 27751818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent Insights Into Molecular Mechanisms of Propofol-Induced Developmental Neurotoxicity: Implications for the Protective Strategies.
    Bosnjak ZJ; Logan S; Liu Y; Bai X
    Anesth Analg; 2016 Nov; 123(5):1286-1296. PubMed ID: 27551735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationship between ketamine-induced developmental neurotoxicity and NMDA receptor-mediated calcium influx in neural stem cell-derived neurons.
    Wang C; Liu F; Patterson TA; Paule MG; Slikker W
    Neurotoxicology; 2017 May; 60():254-259. PubMed ID: 27132109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of nonsynaptic GluN2B-containing NMDA receptors in excitotoxicity: evidence that fluoxetine selectively inhibits these receptors and may have neuroprotective effects.
    Vizi ES; Kisfali M; Lőrincz T
    Brain Res Bull; 2013 Apr; 93():32-8. PubMed ID: 23089362
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Triggers of apoptosis in the immature brain.
    Ikonomidou C
    Brain Dev; 2009 Aug; 31(7):488-92. PubMed ID: 19307071
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potentially toxic effects of anaesthetics on the developing central nervous system.
    Gascon E; Klauser P; Kiss JZ; Vutskits L
    Eur J Anaesthesiol; 2007 Mar; 24(3):213-24. PubMed ID: 17261215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Presynaptic and postsynaptic NMDA receptors mediate distinct effects of brain-derived neurotrophic factor on synaptic transmission.
    Madara JC; Levine ES
    J Neurophysiol; 2008 Dec; 100(6):3175-84. PubMed ID: 18922945
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The chemical biology of clinically tolerated NMDA receptor antagonists.
    Chen HS; Lipton SA
    J Neurochem; 2006 Jun; 97(6):1611-26. PubMed ID: 16805772
    [TBL] [Abstract][Full Text] [Related]  

  • 36. General anesthetic-induced neurotoxicity: an emerging problem for the young and old?
    Culley DJ; Xie Z; Crosby G
    Curr Opin Anaesthesiol; 2007 Oct; 20(5):408-13. PubMed ID: 17873593
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brain protection by anesthetic agents.
    Koerner IP; Brambrink AM
    Curr Opin Anaesthesiol; 2006 Oct; 19(5):481-6. PubMed ID: 16960478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The excitoprotective effect of N-methyl-D-aspartate receptors is mediated by a brain-derived neurotrophic factor autocrine loop in cultured hippocampal neurons.
    Jiang X; Tian F; Mearow K; Okagaki P; Lipsky RH; Marini AM
    J Neurochem; 2005 Aug; 94(3):713-22. PubMed ID: 16000165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protection with estradiol in developmental models of apoptotic neurodegeneration.
    Asimiadou S; Bittigau P; Felderhoff-Mueser U; Manthey D; Sifringer M; Pesditschek S; Dzietko M; Kaindl AM; Pytel M; Studniarczyk D; Mozrzymas JW; Ikonomidou C
    Ann Neurol; 2005 Aug; 58(2):266-76. PubMed ID: 16049923
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protective use of N-methyl-D-aspartate receptor antagonists as a spinoplegia against excitatory amino acid neurotoxicity.
    Cho Y; Ueda T; Mori A; Shimizu H; Haga Y; Yozu R
    J Vasc Surg; 2005 Oct; 42(4):765-71. PubMed ID: 16242566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.