These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 23891553)

  • 41. (-)-nicotine ameliorates corticosterone's potentiation of N-methyl-d-aspartate receptor-mediated cornu ammonis 1 toxicity.
    Mulholland PJ; Self RL; Harris BR; Littleton JM; Prendergast MA
    Neuroscience; 2004; 125(3):671-82. PubMed ID: 15099681
    [TBL] [Abstract][Full Text] [Related]  

  • 42. NMDA receptor activation modulates programmed cell death during early post-natal retinal development: a BDNF-dependent mechanism.
    Martins RA; Silveira MS; Curado MR; Police AI; Linden R
    J Neurochem; 2005 Oct; 95(1):244-53. PubMed ID: 16181428
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular design of proneurogenic and neuroprotective compounds-allosteric NMDA receptor modulators.
    Karlov DS; Radchenko EV; Palyulin VA; Zefirov NS
    Dokl Biochem Biophys; 2017 Mar; 473(1):132-136. PubMed ID: 28510125
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The common antitussive agent dextromethorphan protects against hyperoxia-induced cell death in established in vivo and in vitro models of neonatal brain injury.
    Posod A; Pinzer K; Urbanek M; Wegleiter K; Keller M; Kiechl-Kohlendorfer U; Griesmaier E
    Neuroscience; 2014 Aug; 274():260-72. PubMed ID: 24912029
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Application of microPET imaging approaches in the study of pediatric anesthetic-induced neuronal toxicity.
    Zhang X; Paule MG; Wang C; Slikker W
    J Appl Toxicol; 2013 Sep; 33(9):861-8. PubMed ID: 23400798
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor.
    Olmos G; DeGregorio-Rocasolano N; Paz Regalado M; Gasull T; Assumpció Boronat M; Trullas R; Villarroel A; Lerma J; García-Sevilla JA
    Br J Pharmacol; 1999 Jul; 127(6):1317-26. PubMed ID: 10455281
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neuroprotective and neurotoxic properties of the 'inert' gas, xenon.
    Ma D; Wilhelm S; Maze M; Franks NP
    Br J Anaesth; 2002 Nov; 89(5):739-46. PubMed ID: 12393773
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effects of L-carnitine on the combination of, inhalation anesthetic-induced developmental, neuronal apoptosis in the rat frontal cortex.
    Zou X; Sadovova N; Patterson TA; Divine RL; Hotchkiss CE; Ali SF; Hanig JP; Paule MG; Slikker W; Wang C
    Neuroscience; 2008 Feb; 151(4):1053-65. PubMed ID: 18201836
    [TBL] [Abstract][Full Text] [Related]  

  • 49. GABAergic drugs become neurotoxic in cortical neurons pre-exposed to brain-derived neurotrophic factor.
    Molinaro G; Battaglia G; Riozzi B; Storto M; Fucile S; Eusebi F; Nicoletti F; Bruno V
    Mol Cell Neurosci; 2008 Feb; 37(2):312-22. PubMed ID: 18055218
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inhibition of N-methyl-D-aspartate receptors increases paraoxon-induced apoptosis in cultured neurons.
    Wu X; Tian F; Okagaki P; Marini AM
    Toxicol Appl Pharmacol; 2005 Oct; 208(1):57-67. PubMed ID: 16164961
    [TBL] [Abstract][Full Text] [Related]  

  • 51. BDNF enhancement of postsynaptic NMDA receptors is blocked by ethanol.
    Kolb JE; Trettel J; Levine ES
    Synapse; 2005 Jan; 55(1):52-7. PubMed ID: 15515007
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Emerging molecular mechanisms of general anesthetic action.
    Hemmings HC; Akabas MH; Goldstein PA; Trudell JR; Orser BA; Harrison NL
    Trends Pharmacol Sci; 2005 Oct; 26(10):503-10. PubMed ID: 16126282
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A holistic approach to anesthesia-induced neurotoxicity and its implications for future mechanistic studies.
    Zanghi CN; Jevtovic-Todorovic V
    Neurotoxicol Teratol; 2017; 60():24-32. PubMed ID: 28039052
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular Mechanisms of Anesthetic Neurotoxicity: A Review of the Current Literature.
    Jackson WM; Gray CD; Jiang D; Schaefer ML; Connor C; Mintz CD
    J Neurosurg Anesthesiol; 2016 Oct; 28(4):361-372. PubMed ID: 27564556
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Anesthetic agents and the immature brain: are these toxic or therapeutic?
    Anand KJ; Soriano SG
    Anesthesiology; 2004 Aug; 101(2):527-30. PubMed ID: 15277935
    [No Abstract]   [Full Text] [Related]  

  • 56. Neuropathological sequelae of developmental exposure to antiepileptic and anesthetic drugs.
    Turski CA; Ikonomidou C
    Front Neurol; 2012; 3():120. PubMed ID: 23015798
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Focus on apoptosis to decipher how alcohol and many other drugs disrupt brain development.
    Olney JW
    Front Pediatr; 2014; 2():81. PubMed ID: 25136546
    [No Abstract]   [Full Text] [Related]  

  • 58. [Basic aspects of the potential toxicity of anesthetic drugs].
    Patkai J; Zana-Taieb E; Didier C; Jarreau PH; Lopez E
    Arch Pediatr; 2013 Sep; 20(9):1059-66. PubMed ID: 23891553
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Strategies and experimental models for evaluating anesthetics: effects on the developing nervous system.
    Wang C; Slikker W
    Anesth Analg; 2008 Jun; 106(6):1643-58. PubMed ID: 18499593
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Glutamate signaling and the fetal alcohol syndrome.
    Olney JW; Wozniak DF; Jevtovic-Todorovic V; Ikonomidou C
    Ment Retard Dev Disabil Res Rev; 2001; 7(4):267-75. PubMed ID: 11754521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.