BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 23891935)

  • 21. A model for small heat shock protein inhibition of polyglutamine aggregation.
    Healy EF; Little C; King PJ
    Cell Biochem Biophys; 2014 Jun; 69(2):275-81. PubMed ID: 24242192
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of a novel site of interaction between ataxin-3 and the amyloid aggregation inhibitor polyglutamine binding peptide 1.
    Knight PD; Karamanos TK; Radford SE; Ashcroft AE
    Eur J Mass Spectrom (Chichester); 2018 Feb; 24(1):129-140. PubMed ID: 29334808
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos.
    Xue Y; Yuwen T; Zhu F; Skrynnikov NR
    Biochemistry; 2014 Oct; 53(41):6473-95. PubMed ID: 25207671
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The two-stage pathway of ataxin-3 fibrillogenesis involves a polyglutamine-independent step.
    Ellisdon AM; Thomas B; Bottomley SP
    J Biol Chem; 2006 Jun; 281(25):16888-16896. PubMed ID: 16624810
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural and functional analysis of the Josephin domain of the polyglutamine protein ataxin-3.
    Chow MK; Mackay JP; Whisstock JC; Scanlon MJ; Bottomley SP
    Biochem Biophys Res Commun; 2004 Sep; 322(2):387-94. PubMed ID: 15325242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synergistic folding of two intrinsically disordered proteins: searching for conformational selection.
    Ganguly D; Zhang W; Chen J
    Mol Biosyst; 2012 Jan; 8(1):198-209. PubMed ID: 21766125
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of human proteins that modify misfolding and proteotoxicity of pathogenic ataxin-1.
    Petrakis S; Raskó T; Russ J; Friedrich RP; Stroedicke M; Riechers SP; Muehlenberg K; Möller A; Reinhardt A; Vinayagam A; Schaefer MH; Boutros M; Tricoire H; Andrade-Navarro MA; Wanker EE
    PLoS Genet; 2012; 8(8):e1002897. PubMed ID: 22916034
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural transformation of the tandem ubiquitin-interacting motifs in ataxin-3 and their cooperative interactions with ubiquitin chains.
    Song AX; Zhou CJ; Peng Y; Gao XC; Zhou ZR; Fu QS; Hong J; Lin DH; Hu HY
    PLoS One; 2010 Oct; 5(10):e13202. PubMed ID: 20949063
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-domain misfolding: understanding the aggregation pathway of polyglutamine proteins.
    Saunders HM; Bottomley SP
    Protein Eng Des Sel; 2009 Aug; 22(8):447-51. PubMed ID: 19589877
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Capturing the Conformational Ensemble of the Mixed Folded Polyglutamine Protein Ataxin-3.
    Sicorello A; Różycki B; Konarev PV; Svergun DI; Pastore A
    Structure; 2021 Jan; 29(1):70-81.e5. PubMed ID: 33065068
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structure of a Josephin-ubiquitin complex: evolutionary restraints on ataxin-3 deubiquitinating activity.
    Weeks SD; Grasty KC; Hernandez-Cuebas L; Loll PJ
    J Biol Chem; 2011 Feb; 286(6):4555-65. PubMed ID: 21118805
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The relationship between aggregation and toxicity of polyglutamine-containing ataxin-3 in the intracellular environment of Escherichia coli.
    Invernizzi G; Aprile FA; Natalello A; Ghisleni A; Penco A; Relini A; Doglia SM; Tortora P; Regonesi ME
    PLoS One; 2012; 7(12):e51890. PubMed ID: 23251648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Analysis of Biomolecular Force Fields for Simulations of Polyglutamine in Solution.
    Fluitt AM; de Pablo JJ
    Biophys J; 2015 Sep; 109(5):1009-18. PubMed ID: 26331258
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Large-scale screen for modifiers of ataxin-3-derived polyglutamine-induced toxicity in Drosophila.
    VoSSfeldt H; Butzlaff M; PrüSSing K; Ní Chárthaigh RA; Karsten P; Lankes A; Hamm S; Simons M; Adryan B; Schulz JB; Voigt A
    PLoS One; 2012; 7(11):e47452. PubMed ID: 23139745
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Josephin domain of ataxin-3 contains two distinct ubiquitin-binding sites.
    Nicastro G; Masino L; Esposito V; Menon RP; De Simone A; Fraternali F; Pastore A
    Biopolymers; 2009 Dec; 91(12):1203-14. PubMed ID: 19382171
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulation of polyglutamine conformations and dimer formation by the N-terminus of huntingtin.
    Williamson TE; Vitalis A; Crick SL; Pappu RV
    J Mol Biol; 2010 Mar; 396(5):1295-309. PubMed ID: 20026071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. All-atom stability and oligomerization simulations of polyglutamine nanotubes with and without the 17-amino-acid N-terminal fragment of the Huntingtin protein.
    Côté S; Wei G; Mousseau N
    J Phys Chem B; 2012 Oct; 116(40):12168-79. PubMed ID: 22978784
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of Electrostatic Interactions in Binding of Peptides and Intrinsically Disordered Proteins to Their Folded Targets: 2. The Model of Encounter Complex Involving the Double Mutant of the c-Crk N-SH3 Domain and Peptide Sos.
    Yuwen T; Xue Y; Skrynnikov NR
    Biochemistry; 2016 Mar; 55(12):1784-800. PubMed ID: 26910732
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Residual structures, conformational fluctuations, and electrostatic interactions in the synergistic folding of two intrinsically disordered proteins.
    Zhang W; Ganguly D; Chen J
    PLoS Comput Biol; 2012 Jan; 8(1):e1002353. PubMed ID: 22253588
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Secondary structures of native and pathogenic huntingtin N-terminal fragments.
    Długosz M; Trylska J
    J Phys Chem B; 2011 Oct; 115(40):11597-608. PubMed ID: 21910495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.