These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 23892150)

  • 41. Existence of traveling wave solutions in a diffusive predator-prey model.
    Huang J; Lu G; Ruan S
    J Math Biol; 2003 Feb; 46(2):132-52. PubMed ID: 12567231
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Towards resolving the paradox of enrichment: the impact of zooplankton vertical migrations on plankton systems stability.
    Morozov AY; Petrovskii SV; Nezlin NP
    J Theor Biol; 2007 Oct; 248(3):501-11. PubMed ID: 17624371
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Extinction and permanence of one-prey multi-predators of Holling type II function response system with impulsive biological control.
    Pei Y; Chen L; Zhang Q; Li C
    J Theor Biol; 2005 Aug; 235(4):495-503. PubMed ID: 15935168
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Remarks on antipredator behavior and food chain dynamics.
    Rinaldi S; Gragnani A; De Monte S
    Theor Popul Biol; 2004 Dec; 66(4):277-86. PubMed ID: 15560907
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enrichment and ecosystem stability: effect of toxic food.
    Roy S; Chattopadhyay J
    Biosystems; 2007; 90(1):151-60. PubMed ID: 16963180
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Intuition, functional responses and the formulation of predator-prey models when there is a large disparity in the spatial domains of the interacting species.
    Inchausti P; Ballesteros S
    J Anim Ecol; 2008 Sep; 77(5):891-7. PubMed ID: 18540965
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of density dependent migrations on the dynamics of a predator prey model.
    Mchich R; Bergam A; Raïssi N
    Acta Biotheor; 2005; 53(4):331-40. PubMed ID: 16583273
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The roles of predator maturation delay and functional response in determining the periodicity of predator-prey cycles.
    Wang H; Nagy JD; Gilg O; Kuang Y
    Math Biosci; 2009 Sep; 221(1):1-10. PubMed ID: 19563815
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamical analysis of fractional-order Holling type-II food chain model.
    Liu C; Wang Z; Meng B
    Math Biosci Eng; 2021 Jun; 18(5):5221-5235. PubMed ID: 34517485
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evolution of handling time can destroy the coexistence of cycling predators.
    Kisdi E; Liu S
    J Evol Biol; 2006 Jan; 19(1):49-58. PubMed ID: 16405576
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bifurcation of a delayed Gause predator-prey model with Michaelis-Menten type harvesting.
    Liu W; Jiang Y
    J Theor Biol; 2018 Feb; 438():116-132. PubMed ID: 29129548
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A phytoplankton-zooplankton-fish model with chaos control: In the presence of fear effect and an additional food.
    Sajan ; Sasmal SK; Dubey B
    Chaos; 2022 Jan; 32(1):013114. PubMed ID: 35105117
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Density-dependent dispersal and relative dispersal affect the stability of predator-prey metacommunities.
    Hauzy C; Gauduchon M; Hulot FD; Loreau M
    J Theor Biol; 2010 Oct; 266(3):458-69. PubMed ID: 20638390
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sensitivity of the dynamics of the general Rosenzweig-MacArthur model to the mathematical form of the functional response: a bifurcation theory approach.
    Seo G; Wolkowicz GSK
    J Math Biol; 2018 Jun; 76(7):1873-1906. PubMed ID: 29307085
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of transmissible diseases in the Holling-Tanner predator-prey model.
    Haque M; Venturino E
    Theor Popul Biol; 2006 Nov; 70(3):273-88. PubMed ID: 16905167
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spatiotemporal complexity in a predator--prey model with weak Allee effects.
    Cai Y; Banerjee M; Kang Y; Wang W
    Math Biosci Eng; 2014 Dec; 11(6):1247-74. PubMed ID: 25365601
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pattern formation in prey-taxis systems.
    Lee JM; Hillen T; Lewis MA
    J Biol Dyn; 2009 Nov; 3(6):551-73. PubMed ID: 22880961
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics.
    Petrovskii SV; Malchow H
    Theor Popul Biol; 2001 Mar; 59(2):157-74. PubMed ID: 11302760
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Implications of Eco-Evolutionary Processes for the Emergence of Marine Plankton Community Biogeography.
    Sauterey B; Ward B; Rault J; Bowler C; Claessen D
    Am Nat; 2017 Jul; 190(1):116-130. PubMed ID: 28617645
    [TBL] [Abstract][Full Text] [Related]  

  • 60. On the importance of dimensionality of space in models of space-mediated population persistence.
    Morozov A; Li BL
    Theor Popul Biol; 2007 May; 71(3):278-89. PubMed ID: 17289098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.