BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 23892208)

  • 1. A deficiency in CCR2+ monocytes: the hidden side of Alzheimer's disease.
    Naert G; Rivest S
    J Mol Cell Biol; 2013 Oct; 5(5):284-93. PubMed ID: 23892208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of microglia accumulation in Alzheimer's disease: therapeutic implications.
    El Khoury J; Luster AD
    Trends Pharmacol Sci; 2008 Dec; 29(12):626-32. PubMed ID: 18835047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monocytes and Alzheimer's disease.
    Feng Y; Li L; Sun XH
    Neurosci Bull; 2011 Apr; 27(2):115-22. PubMed ID: 21441973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role and therapeutic potential of monocytic cells in Alzheimer's disease.
    Malm T; Koistinaho M; Muona A; Magga J; Koistinaho J
    Glia; 2010 Jun; 58(8):889-900. PubMed ID: 20155817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stromal cell-derived factor 1α decreases β-amyloid deposition in Alzheimer's disease mouse model.
    Wang Q; Xu Y; Chen JC; Qin YY; Liu M; Liu Y; Xie MJ; Yu ZY; Zhu Z; Wang W
    Brain Res; 2012 Jun; 1459():15-26. PubMed ID: 22560596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease.
    El Khoury J; Toft M; Hickman SE; Means TK; Terada K; Geula C; Luster AD
    Nat Med; 2007 Apr; 13(4):432-8. PubMed ID: 17351623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding the role of the CCL2/CCR2 axis in Alzheimer's disease and innovating therapeutic approaches: Keeping All options open.
    Arfaei R; Mikaeili N; Daj F; Boroumand A; Kheyri A; Yaraghi P; Shirzad Z; Keshavarz M; Hassanshahi G; Jafarzadeh A; Shahrokhi VM; Khorramdelazad H
    Int Immunopharmacol; 2024 Jun; 135():112328. PubMed ID: 38796962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of mononuclear phagocyte recruitment in Alzheimer's disease.
    Hickman SE; El Khoury J
    CNS Neurol Disord Drug Targets; 2010 Apr; 9(2):168-73. PubMed ID: 20205643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soluble CCL5 derived from bone marrow-derived mesenchymal stem cells and activated by amyloid β ameliorates Alzheimer's disease in mice by recruiting bone marrow-induced microglia immune responses.
    Lee JK; Schuchman EH; Jin HK; Bae JS
    Stem Cells; 2012 Jul; 30(7):1544-55. PubMed ID: 22570192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clearance of cerebral Aβ in Alzheimer's disease: reassessing the role of microglia and monocytes.
    Zuroff L; Daley D; Black KL; Koronyo-Hamaoui M
    Cell Mol Life Sci; 2017 Jun; 74(12):2167-2201. PubMed ID: 28197669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone marrow-derived mesenchymal stem cells reduce brain amyloid-beta deposition and accelerate the activation of microglia in an acutely induced Alzheimer's disease mouse model.
    Lee JK; Jin HK; Bae JS
    Neurosci Lett; 2009 Jan; 450(2):136-41. PubMed ID: 19084047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone-marrow-derived cells contribute to the recruitment of microglial cells in response to beta-amyloid deposition in APP/PS1 double transgenic Alzheimer mice.
    Malm TM; Koistinaho M; Pärepalo M; Vatanen T; Ooka A; Karlsson S; Koistinaho J
    Neurobiol Dis; 2005 Feb; 18(1):134-42. PubMed ID: 15649704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microglial activation in Alzheimer's disease.
    Schlachetzki JC; Hüll M
    Curr Alzheimer Res; 2009 Dec; 6(6):554-63. PubMed ID: 19747160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CD11a expression distinguishes infiltrating myeloid cells from plaque-associated microglia in Alzheimer's disease.
    Shukla AK; McIntyre LL; Marsh SE; Schneider CA; Hoover EM; Walsh CM; Lodoen MB; Blurton-Jones M; Inlay MA
    Glia; 2019 May; 67(5):844-856. PubMed ID: 30588668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer's disease.
    Mildner A; Schlevogt B; Kierdorf K; Böttcher C; Erny D; Kummer MP; Quinn M; Brück W; Bechmann I; Heneka MT; Priller J; Prinz M
    J Neurosci; 2011 Aug; 31(31):11159-71. PubMed ID: 21813677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minocycline reduces engraftment and activation of bone marrow-derived cells but sustains their phagocytic activity in a mouse model of Alzheimer's disease.
    Malm TM; Magga J; Kuh GF; Vatanen T; Koistinaho M; Koistinaho J
    Glia; 2008 Dec; 56(16):1767-79. PubMed ID: 18649403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigations with cultured human microglia on pathogenic mechanisms of Alzheimer's disease and other neurodegenerative diseases.
    Walker DG; Lue LF
    J Neurosci Res; 2005 Aug; 81(3):412-25. PubMed ID: 15957156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular players that shape evolving pathology and neurodegeneration following traumatic brain injury.
    Puntambekar SS; Saber M; Lamb BT; Kokiko-Cochran ON
    Brain Behav Immun; 2018 Jul; 71():9-17. PubMed ID: 29601944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CXCL1 contributes to β-amyloid-induced transendothelial migration of monocytes in Alzheimer's disease.
    Zhang K; Tian L; Liu L; Feng Y; Dong YB; Li B; Shang DS; Fang WG; Cao YP; Chen YH
    PLoS One; 2013; 8(8):e72744. PubMed ID: 23967336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer's disease: identification of a cellular activation mechanism.
    Lue LF; Walker DG; Brachova L; Beach TG; Rogers J; Schmidt AM; Stern DM; Yan SD
    Exp Neurol; 2001 Sep; 171(1):29-45. PubMed ID: 11520119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.