BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 23892319)

  • 21. The processing bias for threatening cues revealed by event-related potential and event-related oscillation analyses.
    Sun J; Sun B; Wang B; Gong H
    Neuroscience; 2012 Feb; 203():91-8. PubMed ID: 22233779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural correlates of late positivities associated with infrequent visual events and response errors.
    Helenius P; Laasonen M; Hokkanen L; Paetau R; Niemivirta M
    Neuroimage; 2010 Nov; 53(2):619-28. PubMed ID: 20600965
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Components of attentional bias for food cues among restrained eaters.
    Hollitt S; Kemps E; Tiggemann M; Smeets E; Mills JS
    Appetite; 2010 Apr; 54(2):309-13. PubMed ID: 20005274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing behavioral responses to food: development of a food-specific go/no-go task.
    Teslovich T; Freidl EK; Kostro K; Weigel J; Davidow JY; Riddle MC; Helion C; Dreyfuss M; Rosenbaum M; Walsh BT; Casey BJ; Mayer L
    Psychiatry Res; 2014 Sep; 219(1):166-70. PubMed ID: 24909971
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced sensitivity to rare, emotion-irrelevant stimuli in females: neural correlates.
    Yuan JJ; Yang JM; Chen J; Meng XX; Li H
    Neuroscience; 2010 Sep; 169(4):1758-67. PubMed ID: 20600665
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cognitive and weight-related correlates of flexible and rigid restrained eating behaviour.
    Westenhoefer J; Engel D; Holst C; Lorenz J; Peacock M; Stubbs J; Whybrow S; Raats M
    Eat Behav; 2013 Jan; 14(1):69-72. PubMed ID: 23265405
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time course of automatic emotion regulation during a facial Go/Nogo task.
    Zhang W; Lu J
    Biol Psychol; 2012 Feb; 89(2):444-9. PubMed ID: 22200654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cognitive biases to healthy and unhealthy food words predict change in BMI.
    Calitri R; Pothos EM; Tapper K; Brunstrom JM; Rogers PJ
    Obesity (Silver Spring); 2010 Dec; 18(12):2282-7. PubMed ID: 20379149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative analysis of event-related potentials during Go/NoGo and CPT: decomposition of electrophysiological markers of response inhibition and sustained attention.
    Kirmizi-Alsan E; Bayraktaroglu Z; Gurvit H; Keskin YH; Emre M; Demiralp T
    Brain Res; 2006 Aug; 1104(1):114-28. PubMed ID: 16824492
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anxiety, cognitive self-evaluation and performance: ERP correlates.
    Righi S; Mecacci L; Viggiano MP
    J Anxiety Disord; 2009 Dec; 23(8):1132-8. PubMed ID: 19695828
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temporal attention for visual food stimuli in restrained eaters.
    Neimeijer RA; de Jong PJ; Roefs A
    Appetite; 2013 May; 64():5-11. PubMed ID: 23280401
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differences in attention to food and food intake between overweight/obese and normal-weight females under conditions of hunger and satiety.
    Nijs IM; Muris P; Euser AS; Franken IH
    Appetite; 2010 Apr; 54(2):243-54. PubMed ID: 19922752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Task switching and novelty processing activate a common neural network for cognitive control.
    Barcelo F; Escera C; Corral MJ; Periáñez JA
    J Cogn Neurosci; 2006 Oct; 18(10):1734-48. PubMed ID: 17014377
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Response inhibition toward alcohol-related cues using an alcohol go/no-go task in problem and non-problem drinkers.
    Kreusch F; Vilenne A; Quertemont E
    Addict Behav; 2013 Oct; 38(10):2520-8. PubMed ID: 23773960
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relation of dietary restraint scores to cognitive biases and reward sensitivity.
    Ahern AL; Field M; Yokum S; Bohon C; Stice E
    Appetite; 2010 Aug; 55(1):61-8. PubMed ID: 20399819
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A direct comparison between ERP and fMRI measurements of food-related inhibitory control: Implications for BMI status and dietary intake.
    Carbine KA; Duraccio KM; Kirwan CB; Muncy NM; LeCheminant JD; Larson MJ
    Neuroimage; 2018 Feb; 166():335-348. PubMed ID: 29113942
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of restrained and external eating patterns on overeating.
    Burton P; Smit HJ; Lightowler HJ
    Appetite; 2007 Jul; 49(1):191-7. PubMed ID: 17349717
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How negative affect influences neural control processes underlying the resolution of cognitive interference: an event-related fMRI study.
    Melcher T; Born C; Gruber O
    Neurosci Res; 2011 Aug; 70(4):415-27. PubMed ID: 21620907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Is N2 associated with successful suppression of behavior responses in impulse control processes?
    Dong G; Yang L; Hu Y; Jiang Y
    Neuroreport; 2009 Apr; 20(6):537-42. PubMed ID: 19276864
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of negative mood state on event-related potentials of restrained eating subgroups during an inhibitory control task.
    Liu Y; Zhang L; Jackson T; Wang J; Yang R; Chen H
    Behav Brain Res; 2020 Jan; 377():112249. PubMed ID: 31541673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.