BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 23892713)

  • 1. Mapping multidimensional excited state dynamics using pump-impulsive-vibrational-spectroscopy and pump-degenerate-four-wave-mixing.
    Kraack JP; Wand A; Buckup T; Motzkus M; Ruhman S
    Phys Chem Chem Phys; 2013 Sep; 15(34):14487-501. PubMed ID: 23892713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pump-degenerate four wave mixing as a technique for analyzing structural and electronic evolution: multidimensional time-resolved dynamics near a conical intersection.
    Hauer J; Buckup T; Motzkus M
    J Phys Chem A; 2007 Oct; 111(42):10517-29. PubMed ID: 17914765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multidimensional spectroscopy of beta-carotene: vibrational cooling in the excited state.
    Buckup T; Hauer J; Möhring J; Motzkus M
    Arch Biochem Biophys; 2009 Mar; 483(2):219-23. PubMed ID: 18996351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multidimensional time-resolved spectroscopy of vibrational coherence in biopolyenes.
    Buckup T; Motzkus M
    Annu Rev Phys Chem; 2014; 65():39-57. PubMed ID: 24245903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-photon resonances in femtosecond time-resolved four-wave mixing spectroscopy: beta-carotene.
    Namboodiri V; Namboodiri M; Flachenecker G; Materny A
    J Chem Phys; 2010 Aug; 133(5):054503. PubMed ID: 20707538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct observation of a dark state in lycopene using pump-DFWM.
    Marek MS; Buckup T; Motzkus M
    J Phys Chem B; 2011 Jun; 115(25):8328-37. PubMed ID: 21634400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Femtosecond Stimulated Raman Exposes the Role of Vibrational Coherence in Condensed-Phase Photoreactivity.
    Hoffman DP; Mathies RA
    Acc Chem Res; 2016 Apr; 49(4):616-25. PubMed ID: 27003235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of femtosecond stimulated Raman spectroscopy of excited-state evolution in bacteriorhodopsin.
    Niu K; Zhao B; Sun Z; Lee SY
    J Chem Phys; 2010 Feb; 132(8):084510. PubMed ID: 20192310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multidimensional Vibrational Coherence Spectroscopy.
    Buckup T; Léonard J
    Top Curr Chem (Cham); 2018 Aug; 376(5):35. PubMed ID: 30140956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broad-Band Impulsive Vibrational Spectroscopy of Excited Electronic States in the Time Domain.
    Liebel M; Kukura P
    J Phys Chem Lett; 2013 Apr; 4(8):1358-64. PubMed ID: 26282153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a tunable femtosecond stimulated raman apparatus and its application to beta-carotene.
    Shim S; Mathies RA
    J Phys Chem B; 2008 Apr; 112(15):4826-32. PubMed ID: 18363396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coherent nuclear wavepacket motions in ultrafast excited-state intramolecular proton transfer: sub-30-fs resolved pump-probe absorption spectroscopy of 10-hydroxybenzo[h]quinoline in solution.
    Takeuchi S; Tahara T
    J Phys Chem A; 2005 Nov; 109(45):10199-207. PubMed ID: 16833312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopy.
    Hildner R; Brinks D; Stefani FD; van Hulst NF
    Phys Chem Chem Phys; 2011 Feb; 13(5):1888-94. PubMed ID: 21240402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excited-state intramolecular hydrogen transfer (ESIHT) of 1,8-dihydroxy-9,10-anthraquinone (DHAQ) characterized by ultrafast electronic and vibrational spectroscopy and computational modeling.
    Mohammed OF; Xiao D; Batista VS; Nibbering ET
    J Phys Chem A; 2014 May; 118(17):3090-9. PubMed ID: 24684387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the vibrational dynamics of high-lying electronic states using pump-degenerate four-wave mixing.
    Liebers J; Scaria A; Materny A; Kleinekathöfer U
    Phys Chem Chem Phys; 2010 Feb; 12(6):1351-6. PubMed ID: 20119613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast vibrational dynamics observed in higher electronic excited states of iodine using pump-UV DFWM spectroscopy.
    Scaria A; Namboodiri V; Konradi J; Materny A
    Phys Chem Chem Phys; 2008 Feb; 10(7):983-9. PubMed ID: 18259637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Population-controlled impulsive vibrational spectroscopy: background- and baseline-free Raman spectroscopy of excited electronic states.
    Wende T; Liebel M; Schnedermann C; Pethick RJ; Kukura P
    J Phys Chem A; 2014 Oct; 118(43):9976-84. PubMed ID: 25244029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femtosecond stimulated Raman spectroscopy of the dark S1 excited state of carotenoid in photosynthetic light harvesting complex.
    Yoshizawa M; Nakamura R; Yoshimatsu O; Abe K; Sakai S; Nakagawa K; Fujii R; Nango M; Hashimoto H
    Acta Biochim Pol; 2012; 59(1):49-52. PubMed ID: 22428121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast time-resolved pump-probe spectroscopy of PYP by a sub-8 fs pulse laser at 400 nm.
    Liu J; Yabushita A; Taniguchi S; Chosrowjan H; Imamoto Y; Sueda K; Miyanaga N; Kobayashi T
    J Phys Chem B; 2013 May; 117(17):4818-26. PubMed ID: 23534531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory of femtosecond stimulated Raman spectroscopy.
    Lee SY; Zhang D; McCamant DW; Kukura P; Mathies RA
    J Chem Phys; 2004 Aug; 121(8):3632-42. PubMed ID: 15303930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.