BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1105 related articles for article (PubMed ID: 23892898)

  • 21. Gene activation by a CRISPR-assisted
    Xu X; Gao J; Dai W; Wang D; Wu J; Wang J
    Elife; 2019 Apr; 8():. PubMed ID: 30973327
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease.
    Doetschman T; Georgieva T
    Circ Res; 2017 Mar; 120(5):876-894. PubMed ID: 28254804
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells.
    Ma Y; Zhang J; Yin W; Zhang Z; Song Y; Chang X
    Nat Methods; 2016 Dec; 13(12):1029-1035. PubMed ID: 27723754
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Programmable Transcriptional Modulation with a Structured RNA-Mediated CRISPR-dCas9 Complex.
    He M; Zhou X; Li Z; Yin X; Han W; Zhou J; Sun X; Liu X; Yao D; Liang H
    J Am Chem Soc; 2022 Jul; 144(28):12690-12697. PubMed ID: 35792375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [CRISPR/Cas: a novel way of RNA-guided genome editing].
    Li J; Zhang Y; Chen KL; Shan QW; Wang YP; Liang Z; Gao CX
    Yi Chuan; 2013 Nov; 35(11):1265-73. PubMed ID: 24579309
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR-assisted transcription activation by phase-separation proteins.
    Liu J; Chen Y; Nong B; Luo X; Cui K; Li Z; Zhang P; Tan W; Yang Y; Ma W; Liang P; Songyang Z
    Protein Cell; 2023 Dec; 14(12):874-887. PubMed ID: 36905356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intrinsic activation of cardiosphere-derived cells enhances myocardial repair.
    Sano T; Ito T; Ishigami S; Bandaru S; Sano S
    J Thorac Cardiovasc Surg; 2022 Apr; 163(4):1479-1490.e5. PubMed ID: 32682583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Repurposing type I-F CRISPR-Cas system as a transcriptional activation tool in human cells.
    Chen Y; Liu J; Zhi S; Zheng Q; Ma W; Huang J; Liu Y; Liu D; Liang P; Songyang Z
    Nat Commun; 2020 Jun; 11(1):3136. PubMed ID: 32561716
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3.
    Gong B; Shin M; Sun J; Jung CH; Bolt EL; van der Oost J; Kim JS
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16359-64. PubMed ID: 25368186
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR-Cas-mediated targeted genome editing in human cells.
    Yang L; Mali P; Kim-Kiselak C; Church G
    Methods Mol Biol; 2014; 1114():245-67. PubMed ID: 24557908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combinatorial genetics in liver repopulation and carcinogenesis with a in vivo CRISPR activation platform.
    Wangensteen KJ; Wang YJ; Dou Z; Wang AW; Mosleh-Shirazi E; Horlbeck MA; Gilbert LA; Weissman JS; Berger SL; Kaestner KH
    Hepatology; 2018 Aug; 68(2):663-676. PubMed ID: 29091290
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A CRISPR view of development.
    Harrison MM; Jenkins BV; O'Connor-Giles KM; Wildonger J
    Genes Dev; 2014 Sep; 28(17):1859-72. PubMed ID: 25184674
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR/dCas9 for hepatic fibrosis therapy: implications and challenges.
    Luo N; Zhong W; Li J; Lu J; Dong R
    Mol Biol Rep; 2022 Dec; 49(12):11403-11408. PubMed ID: 35960410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reversible Gene Expression Control in Yersinia pestis by Using an Optimized CRISPR Interference System.
    Wang T; Wang M; Zhang Q; Cao S; Li X; Qi Z; Tan Y; You Y; Bi Y; Song Y; Yang R; Du Z
    Appl Environ Microbiol; 2019 Jun; 85(12):. PubMed ID: 30979834
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment.
    Kennedy EM; Cullen BR
    Virology; 2015 May; 479-480():213-20. PubMed ID: 25759096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR/dCas9 platforms in plants: strategies and applications beyond genome editing.
    Moradpour M; Abdulah SNA
    Plant Biotechnol J; 2020 Jan; 18(1):32-44. PubMed ID: 31392820
    [TBL] [Abstract][Full Text] [Related]  

  • 37. enChIP systems using different CRISPR orthologues and epitope tags.
    Fujita T; Yuno M; Fujii H
    BMC Res Notes; 2018 Feb; 11(1):154. PubMed ID: 29482606
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CRISPR-Act2.0: An Improved Multiplexed System for Plant Transcriptional Activation.
    Malzahn A; Zhang Y; Qi Y
    Methods Mol Biol; 2019; 1917():83-93. PubMed ID: 30610630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNA-Guided Activation of Pluripotency Genes in Human Fibroblasts.
    Xiong K; Zhou Y; Blichfeld KA; Hyttel P; Bolund L; Freude KK; Luo Y
    Cell Reprogram; 2017 Jun; 19(3):189-198. PubMed ID: 28557624
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving CRISPR Gene Editing Efficiency by Proximal dCas9 Targeting.
    Chen F; Ding X; Feng Y; Seebeck T; Jiang Y; Davis GD
    Bio Protoc; 2017 Aug; 7(15):e2432. PubMed ID: 34541154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 56.