These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 23893070)

  • 1. Recombineering homologous recombination constructs in Drosophila.
    Carreira-Rosario A; Scoggin S; Shalaby NA; Williams ND; Hiesinger PR; Buszczak M
    J Vis Exp; 2013 Jul; (77):e50346. PubMed ID: 23893070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serial Recombineering Cloning to Build Selectable and Tagged Genomic P[acman] BAC Clones for Selection Transgenesis and Functional Gene Analysis using Drosophila melanogaster.
    Venken KJT; Matinyan N; Gonzalez Y; Dierick HA
    Curr Protoc; 2023 Feb; 3(2):e675. PubMed ID: 36757632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombination-mediated genetic engineering of large genomic DNA transgenes.
    Ejsmont RK; Ahlfeld P; Pozniakovsky A; Stewart AF; Tomancak P; Sarov M
    Methods Mol Biol; 2011; 772():445-58. PubMed ID: 22065454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homologous recombination-mediated cloning and manipulation of genomic DNA regions using Gateway and recombineering systems.
    Rozwadowski K; Yang W; Kagale S
    BMC Biotechnol; 2008 Nov; 8():88. PubMed ID: 19014699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining recombineering and ends-out homologous recombination to systematically characterize Drosophila gene families: Rab GTPases as a case study.
    Chan CC; Scoggin S; Hiesinger PR; Buszczak M
    Commun Integr Biol; 2012 Mar; 5(2):179-83. PubMed ID: 22808327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new method for rapidly generating gene-targeting vectors by engineering BACs through homologous recombination in bacteria.
    Cotta-de-Almeida V; Schonhoff S; Shibata T; Leiter A; Snapper SB
    Genome Res; 2003 Sep; 13(9):2190-4. PubMed ID: 12915491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential requirements of singleplex and multiplex recombineering of large DNA constructs.
    Reddy TR; Kelsall EJ; Fevat LM; Munson SE; Cowley SM
    PLoS One; 2015; 10(5):e0125533. PubMed ID: 25954970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A universal vector for high-efficiency multi-fragment recombineering of BACs and knock-in constructs.
    Dolt KS; Lawrence ML; Miller-Hodges E; Slight J; Thornburn A; Devenney PS; Hohenstein P
    PLoS One; 2013; 8(4):e62054. PubMed ID: 23637962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant Gene Modification by BAC Recombineering.
    Hu Z; Ghosh A; Koncz C
    Methods Mol Biol; 2022; 2479():71-84. PubMed ID: 35583733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of gene-targeting vectors by recombineering.
    Lee SC; Wang W; Liu P
    Methods Mol Biol; 2009; 530():15-27. PubMed ID: 19266337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BAC-recombineering for studying plant gene regulation: developmental control and cellular localization of SnRK1 kinase subunits.
    Bitrián M; Roodbarkelari F; Horváth M; Koncz C
    Plant J; 2011 Mar; 65(5):829-42. PubMed ID: 21235649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of fosmid genomic libraries optimized for liquid culture recombineering and cross-species transgenesis.
    Ejsmont RK; Bogdanzaliewa M; Lipinski KA; Tomancak P
    Methods Mol Biol; 2011; 772():423-43. PubMed ID: 22065453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transgene Recombineering in Bacterial Artificial Chromosomes.
    Zeidler MG; Saunders TL
    Methods Mol Biol; 2019; 1874():43-69. PubMed ID: 30353507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of recombination-mediated genetic engineering for construction of rescue human cytomegalovirus bacterial artificial chromosome clones.
    Dulal K; Silver B; Zhu H
    J Biomed Biotechnol; 2012; 2012():357147. PubMed ID: 22500089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A recombineering-based gene tagging system for Arabidopsis.
    Alonso JM; Stepanova AN
    Methods Mol Biol; 2015; 1227():233-43. PubMed ID: 25239749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting vector construction through recombineering.
    Malureanu LA
    Methods Mol Biol; 2011; 693():181-203. PubMed ID: 21080281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using recombineering to generate point mutations: the oligonucleotide-based "hit and fix" method.
    Chang S; Stauffer S; Sharan SK
    Methods Mol Biol; 2012; 852():111-20. PubMed ID: 22328429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using recombineering to generate point mutations:galK-based positive-negative selection method.
    Biswas K; Stauffer S; Sharan SK
    Methods Mol Biol; 2012; 852():121-31. PubMed ID: 22328430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A highly efficient recombineering-based method for generating conditional knockout mutations.
    Liu P; Jenkins NA; Copeland NG
    Genome Res; 2003 Mar; 13(3):476-84. PubMed ID: 12618378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster.
    Venken KJ; He Y; Hoskins RA; Bellen HJ
    Science; 2006 Dec; 314(5806):1747-51. PubMed ID: 17138868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.