BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23893070)

  • 1. Recombineering homologous recombination constructs in Drosophila.
    Carreira-Rosario A; Scoggin S; Shalaby NA; Williams ND; Hiesinger PR; Buszczak M
    J Vis Exp; 2013 Jul; (77):e50346. PubMed ID: 23893070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serial Recombineering Cloning to Build Selectable and Tagged Genomic P[acman] BAC Clones for Selection Transgenesis and Functional Gene Analysis using Drosophila melanogaster.
    Venken KJT; Matinyan N; Gonzalez Y; Dierick HA
    Curr Protoc; 2023 Feb; 3(2):e675. PubMed ID: 36757632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombination-mediated genetic engineering of large genomic DNA transgenes.
    Ejsmont RK; Ahlfeld P; Pozniakovsky A; Stewart AF; Tomancak P; Sarov M
    Methods Mol Biol; 2011; 772():445-58. PubMed ID: 22065454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homologous recombination-mediated cloning and manipulation of genomic DNA regions using Gateway and recombineering systems.
    Rozwadowski K; Yang W; Kagale S
    BMC Biotechnol; 2008 Nov; 8():88. PubMed ID: 19014699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining recombineering and ends-out homologous recombination to systematically characterize Drosophila gene families: Rab GTPases as a case study.
    Chan CC; Scoggin S; Hiesinger PR; Buszczak M
    Commun Integr Biol; 2012 Mar; 5(2):179-83. PubMed ID: 22808327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new method for rapidly generating gene-targeting vectors by engineering BACs through homologous recombination in bacteria.
    Cotta-de-Almeida V; Schonhoff S; Shibata T; Leiter A; Snapper SB
    Genome Res; 2003 Sep; 13(9):2190-4. PubMed ID: 12915491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential requirements of singleplex and multiplex recombineering of large DNA constructs.
    Reddy TR; Kelsall EJ; Fevat LM; Munson SE; Cowley SM
    PLoS One; 2015; 10(5):e0125533. PubMed ID: 25954970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A universal vector for high-efficiency multi-fragment recombineering of BACs and knock-in constructs.
    Dolt KS; Lawrence ML; Miller-Hodges E; Slight J; Thornburn A; Devenney PS; Hohenstein P
    PLoS One; 2013; 8(4):e62054. PubMed ID: 23637962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant Gene Modification by BAC Recombineering.
    Hu Z; Ghosh A; Koncz C
    Methods Mol Biol; 2022; 2479():71-84. PubMed ID: 35583733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of gene-targeting vectors by recombineering.
    Lee SC; Wang W; Liu P
    Methods Mol Biol; 2009; 530():15-27. PubMed ID: 19266337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BAC-recombineering for studying plant gene regulation: developmental control and cellular localization of SnRK1 kinase subunits.
    Bitrián M; Roodbarkelari F; Horváth M; Koncz C
    Plant J; 2011 Mar; 65(5):829-42. PubMed ID: 21235649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of fosmid genomic libraries optimized for liquid culture recombineering and cross-species transgenesis.
    Ejsmont RK; Bogdanzaliewa M; Lipinski KA; Tomancak P
    Methods Mol Biol; 2011; 772():423-43. PubMed ID: 22065453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transgene Recombineering in Bacterial Artificial Chromosomes.
    Zeidler MG; Saunders TL
    Methods Mol Biol; 2019; 1874():43-69. PubMed ID: 30353507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of recombination-mediated genetic engineering for construction of rescue human cytomegalovirus bacterial artificial chromosome clones.
    Dulal K; Silver B; Zhu H
    J Biomed Biotechnol; 2012; 2012():357147. PubMed ID: 22500089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A recombineering-based gene tagging system for Arabidopsis.
    Alonso JM; Stepanova AN
    Methods Mol Biol; 2015; 1227():233-43. PubMed ID: 25239749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting vector construction through recombineering.
    Malureanu LA
    Methods Mol Biol; 2011; 693():181-203. PubMed ID: 21080281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using recombineering to generate point mutations: the oligonucleotide-based "hit and fix" method.
    Chang S; Stauffer S; Sharan SK
    Methods Mol Biol; 2012; 852():111-20. PubMed ID: 22328429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using recombineering to generate point mutations:galK-based positive-negative selection method.
    Biswas K; Stauffer S; Sharan SK
    Methods Mol Biol; 2012; 852():121-31. PubMed ID: 22328430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A highly efficient recombineering-based method for generating conditional knockout mutations.
    Liu P; Jenkins NA; Copeland NG
    Genome Res; 2003 Mar; 13(3):476-84. PubMed ID: 12618378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster.
    Venken KJ; He Y; Hoskins RA; Bellen HJ
    Science; 2006 Dec; 314(5806):1747-51. PubMed ID: 17138868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.