BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 23893166)

  • 1. Spontaneous activity in peripheral diaphragmatic lymphatic loops.
    Moriondo A; Solari E; Marcozzi C; Negrini D
    Am J Physiol Heart Circ Physiol; 2013 Oct; 305(7):H987-95. PubMed ID: 23893166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lymph flow pattern in pleural diaphragmatic lymphatics during intrinsic and extrinsic isotonic contraction.
    Moriondo A; Solari E; Marcozzi C; Negrini D
    Am J Physiol Heart Circ Physiol; 2016 Jan; 310(1):H60-70. PubMed ID: 26519032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TRPV4 channels' dominant role in the temperature modulation of intrinsic contractility and lymph flow of rat diaphragmatic lymphatics.
    Solari E; Marcozzi C; Bistoletti M; Baj A; Giaroni C; Negrini D; Moriondo A
    Am J Physiol Heart Circ Physiol; 2020 Aug; 319(2):H507-H518. PubMed ID: 32706268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-dependent modulation of regional lymphatic contraction frequency and flow.
    Solari E; Marcozzi C; Negrini D; Moriondo A
    Am J Physiol Heart Circ Physiol; 2017 Nov; 313(5):H879-H889. PubMed ID: 28778912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diaphragmatic lymphatic vessel behavior during local skeletal muscle contraction.
    Moriondo A; Solari E; Marcozzi C; Negrini D
    Am J Physiol Heart Circ Physiol; 2015 Feb; 308(3):H193-205. PubMed ID: 25485903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of fluid flux in the rat diaphragmatic submesothelial lymphatic lacunae.
    Moriondo A; Bianchin F; Marcozzi C; Negrini D
    Am J Physiol Heart Circ Physiol; 2008 Sep; 295(3):H1182-H1190. PubMed ID: 18641277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperpolarization-activated cyclic nucleotide-gated channels in peripheral diaphragmatic lymphatics.
    Negrini D; Marcozzi C; Solari E; Bossi E; Cinquetti R; Reguzzoni M; Moriondo A
    Am J Physiol Heart Circ Physiol; 2016 Oct; 311(4):H892-H903. PubMed ID: 27496876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lymphatic pumping: mechanics, mechanisms and malfunction.
    Scallan JP; Zawieja SD; Castorena-Gonzalez JA; Davis MJ
    J Physiol; 2016 Oct; 594(20):5749-5768. PubMed ID: 27219461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional recruitment of rat diaphragmatic lymphatics in response to increased pleural or peritoneal fluid load.
    Moriondo A; Grimaldi A; Sciacca L; Guidali ML; Marcozzi C; Negrini D
    J Physiol; 2007 Mar; 579(Pt 3):835-47. PubMed ID: 17218349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axial stretch regulates rat tail collecting lymphatic vessel contractions.
    Razavi MS; Leonard-Duke J; Hardie B; Dixon JB; Gleason RL
    Sci Rep; 2020 Apr; 10(1):5918. PubMed ID: 32246026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lymphatic vessels of the eye - old questions - new insights.
    Grüntzig J; Hollmann F
    Ann Anat; 2019 Jan; 221():1-16. PubMed ID: 30240907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determinants of valve gating in collecting lymphatic vessels from rat mesentery.
    Davis MJ; Rahbar E; Gashev AA; Zawieja DC; Moore JE
    Am J Physiol Heart Circ Physiol; 2011 Jul; 301(1):H48-60. PubMed ID: 21460194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lymphatic pump-conduit duality: contraction of postnodal lymphatic vessels inhibits passive flow.
    Quick CM; Ngo BL; Venugopal AM; Stewart RH
    Am J Physiol Heart Circ Physiol; 2009 Mar; 296(3):H662-8. PubMed ID: 19122167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lymphatic anatomy and biomechanics.
    Negrini D; Moriondo A
    J Physiol; 2011 Jun; 589(Pt 12):2927-34. PubMed ID: 21486777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of intact mesenteric lymphatic pump and its responsiveness to acute edemagenic stress.
    Benoit JN; Zawieja DC; Goodman AH; Granger HJ
    Am J Physiol; 1989 Dec; 257(6 Pt 2):H2059-69. PubMed ID: 2603989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular and cellular basis of the regulation of lymphatic contractility and lymphatic absorption.
    Wang Y; Zhao W; Zhang L; Zhao YN; Li F; Zhang Z; Dai YD; Li WF; Qiao YN; Chen CP; Gao JM; Zhu MS
    Int J Biochem Cell Biol; 2014 Aug; 53():134-40. PubMed ID: 24836907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lymphatic Vessels and Their Surroundings: How Local Physical Factors Affect Lymph Flow.
    Solari E; Marcozzi C; Negrini D; Moriondo A
    Biology (Basel); 2020 Dec; 9(12):. PubMed ID: 33322476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A one-dimensional mathematical model of collecting lymphatics coupled with an electro-fluid-mechanical contraction model and valve dynamics.
    Contarino C; Toro EF
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1687-1714. PubMed ID: 30006745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lymphatic muscle cells in rat mesenteric lymphatic vessels of various ages.
    Bridenbaugh EA; Nizamutdinova IT; Jupiter D; Nagai T; Thangaswamy S; Chatterjee V; Gashev AA
    Lymphat Res Biol; 2013 Mar; 11(1):35-42. PubMed ID: 23531183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-order approximation for the pressure-flow relationship of spontaneously contracting lymphangions.
    Quick CM; Venugopal AM; Dongaonkar RM; Laine GA; Stewart RH
    Am J Physiol Heart Circ Physiol; 2008 May; 294(5):H2144-9. PubMed ID: 18326809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.