These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 23893203)
1. An ultra-linear piezo-floating-gate strain-gauge for self-powered measurement of quasi-static-strain. Sarkar P; Huang C; Chakrabartty S IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):437-50. PubMed ID: 23893203 [TBL] [Abstract][Full Text] [Related]
2. A 5 nW Quasi-Linear CMOS Hot-Electron Injector for Self-Powered Monitoring of Biomechanical Strain Variations. Zhou L; Abraham AC; Tang SY; Chakrabartty S IEEE Trans Biomed Circuits Syst; 2016 Dec; 10(6):1143-1151. PubMed ID: 27214911 [TBL] [Abstract][Full Text] [Related]
3. Self-powered monitoring of repeated head impacts using time-dilation energy measurement circuit. Feng T; Aono K; Covassin T; Chakrabartty S IEEE Trans Biomed Circuits Syst; 2015 Apr; 9(2):217-26. PubMed ID: 25838527 [TBL] [Abstract][Full Text] [Related]
4. Linearization of CMOS Hot-Electron Injectors for Self-Powered Monitoring of Biomechanical Strain Variations. Zhou L; Chakrabartty S IEEE Trans Biomed Circuits Syst; 2017 Apr; 11(2):446-454. PubMed ID: 28113955 [TBL] [Abstract][Full Text] [Related]
5. A piezo-powered floating-gate sensor array for long-term fatigue monitoring in biomechanical implants. Lajnef N; Elvin NG; Chakrabartty S IEEE Trans Biomed Circuits Syst; 2008 Sep; 2(3):164-72. PubMed ID: 23852966 [TBL] [Abstract][Full Text] [Related]
6. A sub-microwatt piezo-floating-gate sensor for long-term fatigue monitoring in biomechanical implants. Lajnef N; Chakrabartty S; Elvin N; Elvin A Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5936-9. PubMed ID: 17946349 [TBL] [Abstract][Full Text] [Related]
7. Monitoring of Postoperative Bone Healing Using Smart Trauma-Fixation Device With Integrated Self-Powered Piezo-Floating-Gate Sensors. Borchani W; Aono K; Lajnef N; Chakrabartty S IEEE Trans Biomed Eng; 2016 Jul; 63(7):1463-72. PubMed ID: 26540667 [TBL] [Abstract][Full Text] [Related]
8. A piezoelectric energy-harvesting shoe system for podiatric sensing. Meier R; Kelly N; Almog O; Chiang P Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():622-5. PubMed ID: 25570036 [TBL] [Abstract][Full Text] [Related]
9. Bio-patch design and implementation based on a low-power system-on-chip and paper-based inkjet printing technology. Yang G; Xie L; Mantysalo M; Chen J; Tenhunen H; Zheng LR IEEE Trans Inf Technol Biomed; 2012 Nov; 16(6):1043-50. PubMed ID: 22711780 [TBL] [Abstract][Full Text] [Related]
10. Strain and force transducers used in human and veterinary tendon and ligament biomechanical studies. Ravary B; Pourcelot P; Bortolussi C; Konieczka S; Crevier-Denoix N Clin Biomech (Bristol); 2004 Jun; 19(5):433-47. PubMed ID: 15182978 [TBL] [Abstract][Full Text] [Related]
11. Micropower circuits for bidirectional wireless telemetry in neural recording applications. Neihart NM; Harrison RR IEEE Trans Biomed Eng; 2005 Nov; 52(11):1950-9. PubMed ID: 16285399 [TBL] [Abstract][Full Text] [Related]
12. Fibre optic Bragg grating sensors: an alternative method to strain gauges for measuring deformation in bone. Fresvig T; Ludvigsen P; Steen H; Reikerås O Med Eng Phys; 2008 Jan; 30(1):104-8. PubMed ID: 17369073 [TBL] [Abstract][Full Text] [Related]
13. [Development of passive telemetry system for intracranial pressure measurement with corrector of errors caused by temperature variation]. Magara M; Saitoh Y; Kiryu T; Makino H; Tanaka R Iyodenshi To Seitai Kogaku; 1989 Mar; 27(1):35-44. PubMed ID: 2754863 [TBL] [Abstract][Full Text] [Related]
14. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique. Battista L; Sciuto SA; Scorza A Rev Sci Instrum; 2013 Mar; 84(3):035005. PubMed ID: 23556844 [TBL] [Abstract][Full Text] [Related]
15. Characterization of a silicon-based shear-force sensor on human subjects. Wang L; Beebe DJ IEEE Trans Biomed Eng; 2002 Nov; 49(11):1340-7. PubMed ID: 12450364 [TBL] [Abstract][Full Text] [Related]
16. Stretchy Electrochemical Harvesters for Binarized Self-Powered Strain Gauge-Based Static Motion Sensors. Sim HJ; Kim J; Choi JH; Oh M; Choi C Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746323 [TBL] [Abstract][Full Text] [Related]
17. A fully implantable telemetry system for the long-term measurement of habitual bone strain. de Jong WC; Koolstra JH; van Ruijven LJ; Korfage JA; Langenbach GE J Biomech; 2010 Feb; 43(3):587-91. PubMed ID: 19880121 [TBL] [Abstract][Full Text] [Related]
19. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators. Zuo C; Van der Spiegel J; Piazza G IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):82-7. PubMed ID: 20040430 [TBL] [Abstract][Full Text] [Related]
20. Variable self-powered light detection CMOS chip with real-time adaptive tracking digital output based on a novel on-chip sensor. Wang H; Fan Y; Lu Z; Luo T; Fu H; Song H; Zhao Y; Christen JB Opt Express; 2017 Oct; 25(20):24138-24147. PubMed ID: 29041359 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]