These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 23893504)

  • 1. Superhydrophobic conducting polymers based on hydrocarbon poly(3,4-ethylenedioxyselenophene).
    Dunand O; Darmanin T; Guittard F
    Chemphyschem; 2013 Sep; 14(13):2947-53. PubMed ID: 23893504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrocatalysis of 2,5-dimercapto-1,3,5-thiadiazole by 3,4-ethylenedioxy-substituted conducting polymers.
    Rodríguez-Calero GG; Lowe MA; Burkhardt SE; Abruña HD
    Langmuir; 2011 Nov; 27(22):13904-9. PubMed ID: 21955097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrocarbon versus fluorocarbon in the electrodeposition of superhydrophobic polymer films.
    Darmanin T; Taffin de Givenchy E; Amigoni S; Guittard F
    Langmuir; 2010 Nov; 26(22):17596-602. PubMed ID: 20879773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling the wettability and adhesion of nanostructured poly-(p-xylylene) films.
    Boduroglu S; Cetinkaya M; Dressick WJ; Singh A; Demirel MC
    Langmuir; 2007 Nov; 23(23):11391-5. PubMed ID: 17929851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of superhydrophobic porous coordination polymers through the introduction of external surface corrugation by the use of an aromatic hydrocarbon building unit.
    Rao KP; Higuchi M; Sumida K; Furukawa S; Duan J; Kitagawa S
    Angew Chem Int Ed Engl; 2014 Jul; 53(31):8225-30. PubMed ID: 24975561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of porous hierarchical polymer/ceramic composites by electron irradiation of organic/inorganic polymers: route to a highly durable, large-area superhydrophobic coating.
    Lee EJ; Kim JJ; Cho SO
    Langmuir; 2010 Mar; 26(5):3024-30. PubMed ID: 20121048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructured superhydrophobic films synthesized by electrodeposition of fluorinated polyindoles.
    Ramos Chagas G; Darmanin T; Guittard F
    Beilstein J Nanotechnol; 2015; 6():2078-87. PubMed ID: 26665079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorophobic effect for building up the surface morphology of electrodeposited substituted conductive polymers.
    Darmanin T; Guittard F
    Langmuir; 2009 May; 25(10):5463-6. PubMed ID: 19391578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH- and voltage-switchable superhydrophobic surfaces by electro-copolymerization of EDOT derivatives containing carboxylic acids and long alkyl chains.
    Darmanin T; Guittard F
    Chemphyschem; 2013 Aug; 14(11):2529-33. PubMed ID: 23720228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superhydrophobic fiber mats by electrodeposition of fluorinated poly(3,4-ethyleneoxythiathiophene).
    Darmanin T; Guittard F
    J Am Chem Soc; 2011 Oct; 133(39):15627-34. PubMed ID: 21870812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal/plasma-driven reversible wettability switching of a bare gold film on a poly(dimethylsiloxane) surface by electroless plating.
    Wu J; Bai HJ; Zhang XB; Xu JJ; Chen HY
    Langmuir; 2010 Jan; 26(2):1191-8. PubMed ID: 19722553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electropolymerized tyrosine-based thin films: selective cell binding via peptide recognition to novel electropolymerized biomimetic tyrosine RGDY films.
    Marx KA; Zhou T; McIntosh D; Braunhut SJ
    Anal Biochem; 2009 Jan; 384(1):86-95. PubMed ID: 18926794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterning and impregnation of superhydrophobic surfaces using aqueous solutions.
    Manna U; Lynn DM
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7731-6. PubMed ID: 23931600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface morphology control of polymer films by electron irradiation and its application to superhydrophobic surfaces.
    Lee EJ; Jung CH; Hwang IT; Choi JH; Cho SO; Nho YC
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):2988-93. PubMed ID: 21776956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of deposition parameters on the wettability and microstructure of superhydrophobic films with hierarchical micro-nano structures.
    Basu BJ; Manasa J
    J Colloid Interface Sci; 2011 Nov; 363(2):655-62. PubMed ID: 21864844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Honeycomb-structured films by multifunctional amphiphilic biodegradable copolymers: surface morphology control and biomedical application as scaffolds for cell growth.
    Zhu Y; Sheng R; Luo T; Li H; Sun J; Chen S; Sun W; Cao A
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2487-95. PubMed ID: 21699231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Durability and restoring of superhydrophobic properties in silica-based coatings.
    Mahadik SA; Fernando PD; Hegade ND; Wagh PB; Gupta SC
    J Colloid Interface Sci; 2013 Sep; 405():262-8. PubMed ID: 23746435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-step production of superhydrophobic coatings on flat substrates via atmospheric Rf plasma process using non-fluorinated hydrocarbons.
    Lee SH; Dilworth ZR; Hsiao E; Barnette AL; Marino M; Kim JH; Kang JG; Jung TH; Kim SH
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):476-81. PubMed ID: 21280582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyelectrolyte blend multilayer films: surface morphology, wettability, and protein adsorption characteristics.
    Quinn A; Tjipto E; Yu A; Gengenbach TR; Caruso F
    Langmuir; 2007 Apr; 23(9):4944-9. PubMed ID: 17397199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.