BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 23893546)

  • 1. Enantioselective intramolecular C-H amination catalyzed by engineered cytochrome P450 enzymes in vitro and in vivo.
    McIntosh JA; Coelho PS; Farwell CC; Wang ZJ; Lewis JC; Brown TR; Arnold FH
    Angew Chem Int Ed Engl; 2013 Aug; 52(35):9309-12. PubMed ID: 23893546
    [No Abstract]   [Full Text] [Related]  

  • 2. Catalytic C-H amination: a reaction now accessible to engineered natural enzymes.
    Mahy JP; Ciesielski J; Dauban P
    Angew Chem Int Ed Engl; 2014 Jul; 53(27):6862-4. PubMed ID: 24895319
    [No Abstract]   [Full Text] [Related]  

  • 3. An enzymatic platform for the asymmetric amination of primary, secondary and tertiary C(sp
    Yang Y; Cho I; Qi X; Liu P; Arnold FH
    Nat Chem; 2019 Nov; 11(11):987-993. PubMed ID: 31611634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Study of Engineered Cytochrome P450-Catalyzed C-H Amination: The Origin of the Regio- and Stereoselectivity.
    Li Z; Burnell DJ; Boyd RJ
    J Phys Chem B; 2017 Dec; 121(48):10859-10868. PubMed ID: 29131622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intramolecular C(sp(3))H amination of arylsulfonyl azides with engineered and artificial myoglobin-based catalysts.
    Bordeaux M; Singh R; Fasan R
    Bioorg Med Chem; 2014 Oct; 22(20):5697-704. PubMed ID: 24890656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450.
    Zhou Q; Chin M; Fu Y; Liu P; Yang Y
    Science; 2021 Dec; 374(6575):1612-1616. PubMed ID: 34941416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective, intermolecular benzylic C-H amination catalysed by an engineered iron-haem enzyme.
    Prier CK; Zhang RK; Buller AR; Brinkmann-Chen S; Arnold FH
    Nat Chem; 2017 Jul; 9(7):629-634. PubMed ID: 28644476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrene transfers mediated by natural and artificial iron enzymes.
    Coin G; Latour JM
    J Inorg Biochem; 2021 Dec; 225():111613. PubMed ID: 34634542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism-Guided Design and Discovery of Efficient Cytochrome P450-Derived C-H Amination Biocatalysts.
    Steck V; Kolev JN; Ren X; Fasan R
    J Am Chem Soc; 2020 Jun; 142(23):10343-10357. PubMed ID: 32407077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotransformations using prokaryotic P450 monooxygenases.
    Urlacher V; Schmid RD
    Curr Opin Biotechnol; 2002 Dec; 13(6):557-64. PubMed ID: 12482514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes.
    Coelho PS; Brustad EM; Kannan A; Arnold FH
    Science; 2013 Jan; 339(6117):307-10. PubMed ID: 23258409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A single active site mutation inverts stereoselectivity of 16-hydroxylation of testosterone catalyzed by engineered cytochrome P450 BM3.
    Venkataraman H; Beer SB; Bergen LA; Essen Nv; Geerke DP; Vermeulen NP; Commandeur JN
    Chembiochem; 2012 Mar; 13(4):520-3. PubMed ID: 22275147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocatalytic route to chiral acyloins: P450-catalyzed regio- and enantioselective α-hydroxylation of ketones.
    Agudo R; Roiban GD; Lonsdale R; Ilie A; Reetz MT
    J Org Chem; 2015 Jan; 80(2):950-6. PubMed ID: 25495724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantioselective biocatalytic formal α-amination of hexanoic acid to l-norleucine.
    Dennig A; Gandomkar S; Cigan E; Reiter TC; Haas T; Hall M; Faber K
    Org Biomol Chem; 2018 Nov; 16(43):8030-8033. PubMed ID: 30334043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved cyclopropanation activity of histidine-ligated cytochrome P450 enables the enantioselective formal synthesis of levomilnacipran.
    Wang ZJ; Renata H; Peck NE; Farwell CC; Coelho PS; Arnold FH
    Angew Chem Int Ed Engl; 2014 Jun; 53(26):6810-3. PubMed ID: 24802161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-function enzyme catalysis for enantioselective carbon-nitrogen bond formation.
    Liu Z; Calvó-Tusell C; Zhou AZ; Chen K; Garcia-Borràs M; Arnold FH
    Nat Chem; 2021 Dec; 13(12):1166-1172. PubMed ID: 34663919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantioselective imidation of sulfides via enzyme-catalyzed intermolecular nitrogen-atom transfer.
    Farwell CC; McIntosh JA; Hyster TK; Wang ZJ; Arnold FH
    J Am Chem Soc; 2014 Jun; 136(24):8766-71. PubMed ID: 24901646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper-catalyzed enantioselective intramolecular alkene amination/intermolecular Heck-type coupling cascade.
    Liwosz TW; Chemler SR
    J Am Chem Soc; 2012 Feb; 134(4):2020-3. PubMed ID: 22257169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nature of chemical innovation: new enzymes by evolution.
    Arnold FH
    Q Rev Biophys; 2015 Nov; 48(4):404-10. PubMed ID: 26537398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. P450-catalyzed intramolecular
    Singh R; Bordeaux M; Fasan R
    ACS Catal; 2014 Jan; 4(2):546-552. PubMed ID: 24634794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.