These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23893547)

  • 21. Effect of peptide and guest charge on the structural, mechanical and release properties of β-sheet forming peptides.
    Roberts D; Rochas C; Saiani A; Miller AF
    Langmuir; 2012 Nov; 28(46):16196-206. PubMed ID: 23088490
    [TBL] [Abstract][Full Text] [Related]  

  • 22. De novo design of strand-swapped beta-hairpin hydrogels.
    Nagarkar RP; Hule RA; Pochan DJ; Schneider JP
    J Am Chem Soc; 2008 Apr; 130(13):4466-74. PubMed ID: 18335936
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Poly(l-cysteine) Peptide Amphiphile Derivatives Containing Disulfide Bonds: Synthesis, Self-Assembly-Induced β-Sheet Nanostructures, pH/Reduction Dual Response, and Drug Release.
    Dong L; Chen H; Liu T; Zhu J; Yu M; Yuan Q
    Biomacromolecules; 2021 Dec; 22(12):5374-5381. PubMed ID: 34846860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of self-assembling beta-sheet peptides with phospholipid monolayers: the role of aggregation state, polarity, charge and applied field.
    Protopapa E; Maude S; Aggeli A; Nelson A
    Langmuir; 2009 Mar; 25(5):3289-96. PubMed ID: 19437790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterisation of minimalist co-assembled fluorenylmethyloxycarbonyl self-assembling peptide systems for presentation of multiple bioactive peptides.
    Horgan CC; Rodriguez AL; Li R; Bruggeman KF; Stupka N; Raynes JK; Day L; White JW; Williams RJ; Nisbet DR
    Acta Biomater; 2016 Jul; 38():11-22. PubMed ID: 27131571
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles.
    Nowak AP; Breedveld V; Pakstis L; Ozbas B; Pine DJ; Pochan D; Deming TJ
    Nature; 2002 May; 417(6887):424-8. PubMed ID: 12024209
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glycine Substitution Effects on the Supramolecular Morphology and Rigidity of Cell-Adhesive Amphiphilic Peptides.
    Ishida A; Watanabe G; Oshikawa M; Ajioka I; Muraoka T
    Chemistry; 2019 Oct; 25(59):13523-13530. PubMed ID: 31283853
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical characteristics of beta sheet-forming peptide hydrogels are dependent on peptide sequence, concentration and buffer composition.
    Koch F; Müller M; König F; Meyer N; Gattlen J; Pieles U; Peters K; Kreikemeyer B; Mathes S; Saxer S
    R Soc Open Sci; 2018 Mar; 5(3):171562. PubMed ID: 29657766
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multifunctional thermoresponsive designer peptide hydrogels.
    De Leon-Rodriguez LM; Hemar Y; Mo G; Mitra AK; Cornish J; Brimble MA
    Acta Biomater; 2017 Jan; 47():40-49. PubMed ID: 27744067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tuning β-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity.
    Bowerman CJ; Liyanage W; Federation AJ; Nilsson BL
    Biomacromolecules; 2011 Jul; 12(7):2735-45. PubMed ID: 21568346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteolytic stability of amphipathic peptide hydrogels composed of self-assembled pleated β-sheet or coassembled rippled β-sheet fibrils.
    Swanekamp RJ; Welch JJ; Nilsson BL
    Chem Commun (Camb); 2014 Sep; 50(70):10133-6. PubMed ID: 25050628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A modular self-assembly approach to functionalised β-sheet peptide hydrogel biomaterials.
    King PJ; Giovanna Lizio M; Booth A; Collins RF; Gough JE; Miller AF; Webb SJ
    Soft Matter; 2016 Feb; 12(6):1915-23. PubMed ID: 26702608
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetically engineered block copolymers: influence of the length and structure of the coiled-coil blocks on hydrogel self-assembly.
    Xu C; Kopecek J
    Pharm Res; 2008 Mar; 25(3):674-82. PubMed ID: 17713844
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Peptide Sequence Variations Govern Hydrogel Stiffness: Insights from a Multi-Scale Structural Analysis of H-FQFQFK-NH
    De Maeseneer T; Cauwenbergh T; Gardiner J; White JF; Thielemans W; Martin C; Moldenaers P; Ballet S; Cardinaels R
    Macromol Biosci; 2024 Aug; 24(8):e2300579. PubMed ID: 38552257
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A reductive trigger for peptide self-assembly and hydrogelation.
    Bowerman CJ; Nilsson BL
    J Am Chem Soc; 2010 Jul; 132(28):9526-7. PubMed ID: 20405940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. pH-Responsive Biocompatible Supramolecular Peptide Hydrogel.
    Ghosh G; Barman R; Sarkar J; Ghosh S
    J Phys Chem B; 2019 Jul; 123(27):5909-5915. PubMed ID: 31246033
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self assembled bi-functional peptide hydrogels with biomineralization-directing peptides.
    Gungormus M; Branco M; Fong H; Schneider JP; Tamerler C; Sarikaya M
    Biomaterials; 2010 Oct; 31(28):7266-74. PubMed ID: 20591477
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives.
    Ryan DM; Doran TM; Anderson SB; Nilsson BL
    Langmuir; 2011 Apr; 27(7):4029-39. PubMed ID: 21401045
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design of self-assembling peptide hydrogelators amenable to bacterial expression.
    Sonmez C; Nagy KJ; Schneider JP
    Biomaterials; 2015 Jan; 37():62-72. PubMed ID: 25453938
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications.
    Kahn JS; Hu Y; Willner I
    Acc Chem Res; 2017 Apr; 50(4):680-690. PubMed ID: 28248486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.