BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 23893605)

  • 1. Design of NK-2-derived peptides with improved activity against equine sarcoid cells.
    Gross S; Wilms D; Krause J; Brezesinski G; Andrä J
    J Pept Sci; 2013 Oct; 19(10):619-28. PubMed ID: 23893605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of patient-derived high and low phosphatidylserine-exposing colorectal carcinoma cells in their interaction with anti-cancer peptides.
    Wilms D; Andrä J
    J Pept Sci; 2017 Jan; 23(1):56-67. PubMed ID: 28066958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New lytic peptides based on the D,L-amphipathic helix motif preferentially kill tumor cells compared to normal cells.
    Papo N; Shai Y
    Biochemistry; 2003 Aug; 42(31):9346-54. PubMed ID: 12899621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The NK-lysin derived peptide NK-2 preferentially kills cancer cells with increased surface levels of negatively charged phosphatidylserine.
    Schröder-Borm H; Bakalova R; Andrä J
    FEBS Lett; 2005 Nov; 579(27):6128-34. PubMed ID: 16269280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative mode of action of novel hybrid peptide CS-1a and its rearranged amphipathic analogue CS-2a.
    Joshi S; Bisht GS; Rawat DS; Maiti S; Pasha S
    FEBS J; 2012 Oct; 279(20):3776-90. PubMed ID: 22883393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipopolysaccharide interaction is decisive for the activity of the antimicrobial peptide NK-2 against Escherichia coli and Proteus mirabilis.
    Hammer MU; Brauser A; Olak C; Brezesinski G; Goldmann T; Gutsmann T; Andrä J
    Biochem J; 2010 Apr; 427(3):477-88. PubMed ID: 20187872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective cancer cell cytotoxicity of enantiomeric 9-mer peptides derived from beetle defensins depends on negatively charged phosphatidylserine on the cell surface.
    Iwasaki T; Ishibashi J; Tanaka H; Sato M; Asaoka A; Taylor D; Yamakawa M
    Peptides; 2009 Apr; 30(4):660-8. PubMed ID: 19154767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Pro --> peptoid residue substitution on cell selectivity and mechanism of antibacterial action of tritrpticin-amide antimicrobial peptide.
    Zhu WL; Lan H; Park Y; Yang ST; Kim JI; Park IS; You HJ; Lee JS; Park YS; Kim Y; Hahm KS; Shin SY
    Biochemistry; 2006 Oct; 45(43):13007-17. PubMed ID: 17059217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface antigens on equine sarcoid cells and normal dermal fibroblasts as assessed by xenogeneic antisera.
    Brostroöm H; Paulie S; Perlmann P
    Res Vet Sci; 1989 Mar; 46(2):172-9. PubMed ID: 2704881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane association, electrostatic sequestration, and cytotoxicity of Gly-Leu-rich peptide orthologs with differing functions.
    Vanhoye D; Bruston F; El Amri S; Ladram A; Amiche M; Nicolas P
    Biochemistry; 2004 Jul; 43(26):8391-409. PubMed ID: 15222751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anticancer mechanisms of temporin-1CEa, an amphipathic α-helical antimicrobial peptide, in Bcap-37 human breast cancer cells.
    Wang C; Zhou Y; Li S; Li H; Tian L; Wang H; Shang D
    Life Sci; 2013 May; 92(20-21):1004-14. PubMed ID: 23583573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of potent, non-toxic antimicrobial agents based upon the naturally occurring frog skin peptides, ascaphin-8 and peptide XT-7.
    Conlon JM; Galadari S; Raza H; Condamine E
    Chem Biol Drug Des; 2008 Jul; 72(1):58-64. PubMed ID: 18554256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro characterization of the anticancer activity of membrane-active cationic peptides. I. Peptide-mediated cytotoxicity and peptide-enhanced cytotoxic activity of doxorubicin against wild-type and p-glycoprotein over-expressing tumor cell lines.
    Johnstone SA; Gelmon K; Mayer LD; Hancock RE; Bally MB
    Anticancer Drug Des; 2000 Apr; 15(2):151-60. PubMed ID: 10901303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The activity of LE10 peptide on biological membranes using molecular dynamics, in vitro and in vivo studies.
    Antunes E; Azoia NG; Matamá T; Gomes AC; Cavaco-Paulo A
    Colloids Surf B Biointerfaces; 2013 Jun; 106():240-7. PubMed ID: 23434718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical property and membrane-peptide interactions of de novo antimicrobial peptides designed by helix-forming units.
    Ma QQ; Dong N; Shan AS; Lv YF; Li YZ; Chen ZH; Cheng BJ; Li ZY
    Amino Acids; 2012 Dec; 43(6):2527-36. PubMed ID: 22699557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing bacterial membrane interactions and antimicrobial activity of porcine lactoferricin-derived peptides.
    Han FF; Gao YH; Luan C; Xie YG; Liu YF; Wang YZ
    J Dairy Sci; 2013 Jun; 96(6):3471-87. PubMed ID: 23567049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cationic amphiphilic peptides with cancer-selective toxicity.
    Schweizer F
    Eur J Pharmacol; 2009 Dec; 625(1-3):190-4. PubMed ID: 19835863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of hybrid β-hairpin peptides with enhanced cell specificity and potent anti-inflammatory activity.
    Liu Y; Xia X; Xu L; Wang Y
    Biomaterials; 2013 Jan; 34(1):237-50. PubMed ID: 23046754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the antimicrobial peptide temporin L on cell morphology, membrane permeability and viability of Escherichia coli.
    Mangoni ML; Papo N; Barra D; Simmaco M; Bozzi A; Di Giulio A; Rinaldi AC
    Biochem J; 2004 Jun; 380(Pt 3):859-65. PubMed ID: 15032749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.