These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 23893620)

  • 1. Coupling dark metabolism to electricity generation using photosynthetic cocultures.
    Badalamenti JP; Torres CI; Krajmalnik-Brown R
    Biotechnol Bioeng; 2014 Feb; 111(2):223-31. PubMed ID: 23893620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-responsive current generation by phototrophically enriched anode biofilms dominated by green sulfur bacteria.
    Badalamenti JP; Torres CI; Krajmalnik-Brown R
    Biotechnol Bioeng; 2013 Apr; 110(4):1020-7. PubMed ID: 23124549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of high current densities by pure cultures of anode-respiring Geoalkalibacter spp. under alkaline and saline conditions in microbial electrochemical cells.
    Badalamenti JP; Krajmalnik-Brown R; Torres CI
    mBio; 2013 Apr; 4(3):e00144-13. PubMed ID: 23631915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light/electricity conversion by defined cocultures of Chlamydomonas and Geobacter.
    Nishio K; Hashimoto K; Watanabe K
    J Biosci Bioeng; 2013 Apr; 115(4):412-7. PubMed ID: 23211438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a "Geospirillum" sp. strain.
    Heising S; Richter L; Ludwig W; Schink B
    Arch Microbiol; 1999 Aug; 172(2):116-24. PubMed ID: 10415173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deciphering the differentiated performance on electricity generation and COD degradation by Rhodopseudomonas-dominated bioanode in light or dark.
    Li X; Zhan G; Wang J; Zhang L
    Chemosphere; 2024 Jul; 359():142323. PubMed ID: 38735496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of inoculum and anode surface properties on the selection of Geobacter-dominated biofilms.
    Commault AS; Barrière F; Lapinsonnière L; Lear G; Bouvier S; Weld RJ
    Bioresour Technol; 2015 Nov; 195():265-72. PubMed ID: 26166461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells.
    Ren Z; Steinberg LM; Regan JM
    Water Sci Technol; 2008; 58(3):617-22. PubMed ID: 18725730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical evidence for direct interspecies electron transfer between Geobacter sulfurreducens and Prosthecochloris aestuarii.
    Huang L; Liu X; Tang J; Yu L; Zhou S
    Bioelectrochemistry; 2019 Jun; 127():21-25. PubMed ID: 30641310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer.
    Ha PT; Lindemann SR; Shi L; Dohnalkova AC; Fredrickson JK; Madigan MT; Beyenal H
    Nat Commun; 2017 Jan; 8():13924. PubMed ID: 28067226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining microbial cultures for efficient production of electricity from butyrate in a microbial electrochemical cell.
    Miceli JF; Garcia-Peña I; Parameswaran P; Torres CI; Krajmalnik-Brown R
    Bioresour Technol; 2014 Oct; 169():169-174. PubMed ID: 25048958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors.
    Jung S; Regan JM
    Appl Microbiol Biotechnol; 2007 Nov; 77(2):393-402. PubMed ID: 17786426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing factors of electricity generation in a microbial fuel cell using Geobacter sulfurreducens.
    Kim MS; Cha J; Kim DH
    J Microbiol Biotechnol; 2012 Oct; 22(10):1395-400. PubMed ID: 23075791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electricity-assisted biological hydrogen production from acetate by Geobacter sulfurreducens.
    Geelhoed JS; Stams AJ
    Environ Sci Technol; 2011 Jan; 45(2):815-20. PubMed ID: 21158443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells.
    Nevin KP; Richter H; Covalla SF; Johnson JP; Woodard TL; Orloff AL; Jia H; Zhang M; Lovley DR
    Environ Microbiol; 2008 Oct; 10(10):2505-14. PubMed ID: 18564184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells.
    Reguera G; Nevin KP; Nicoll JS; Covalla SF; Woodard TL; Lovley DR
    Appl Environ Microbiol; 2006 Nov; 72(11):7345-8. PubMed ID: 16936064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial anodic consortia fed with fermentable substrates in microbial electrolysis cells: Significance of microbial structures.
    Flayac C; Trably E; Bernet N
    Bioelectrochemistry; 2018 Oct; 123():219-226. PubMed ID: 29874632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enrichment and analysis of anode-respiring bacteria from diverse anaerobic inocula.
    Miceli JF; Parameswaran P; Kang DW; Krajmalnik-Brown R; Torres CI
    Environ Sci Technol; 2012 Sep; 46(18):10349-55. PubMed ID: 22909141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of anode potentials on selection of Geobacter strains in microbial electrolysis cells.
    Commault AS; Lear G; Packer MA; Weld RJ
    Bioresour Technol; 2013 Jul; 139():226-34. PubMed ID: 23665518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Ecophysiological properties of photosynthesizing bacteria from the Black Sea chemocline zone].
    Gorlenko VM; Mikheev PV; Rusanov II; Pimenov NV; Ivanov MV
    Mikrobiologiia; 2005; 74(2):239-47. PubMed ID: 15938401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.