BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 23893777)

  • 1. Spatially controlled surface immobilization of nonmodified peptides.
    Pauloehrl T; Welle A; Bruns M; Linkert K; Börner HG; Bastmeyer M; Delaittre G; Barner-Kowollik C
    Angew Chem Int Ed Engl; 2013 Sep; 52(37):9714-8. PubMed ID: 23893777
    [No Abstract]   [Full Text] [Related]  

  • 2. Site-specific peptide and protein immobilization on surface plasmon resonance chips via strain-promoted cycloaddition.
    Wammes AE; Fischer MJ; de Mol NJ; van Eldijk MB; Rutjes FP; van Hest JC; van Delft FL
    Lab Chip; 2013 May; 13(10):1863-7. PubMed ID: 23552823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C-Terminal acetylene derivatized peptides via silyl-based alkyne immobilization.
    Strack M; Metzler-Nolte N; Albada HB
    Org Lett; 2013 Jun; 15(12):3126-9. PubMed ID: 24490777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caged peptides to control enzymatic activity within hydrogel scaffolds.
    Lin Y; Wang Q
    Chembiochem; 2014 Apr; 15(6):787-8. PubMed ID: 24590591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microarray immobilization of biomolecules using a fast trans-cyclooctene (TCO)-tetrazine reaction.
    Wang P; Na Z; Fu J; Tan CY; Zhang H; Yao SQ; Sun H
    Chem Commun (Camb); 2014 Oct; 50(80):11818-21. PubMed ID: 25052778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer-binding peptides for the noncovalent modification of polymer surfaces: effects of peptide density on the subsequent immobilization of functional proteins.
    Date T; Sekine J; Matsuno H; Serizawa T
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):351-9. PubMed ID: 21288050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Room temperature freezing and orientational control of surface-immobilized peptides in air.
    Li Y; Zhang X; Myers J; Abbott NL; Chen Z
    Chem Commun (Camb); 2015 Jul; 51(55):11015-8. PubMed ID: 26068205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical cleavage of azo linkage for site-selective immobilization and cell patterning.
    Jung HJ; Min H; Yu H; Lee TG; Chung TD
    Chem Commun (Camb); 2010 Jun; 46(22):3863-5. PubMed ID: 20442912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalent surface modification of titanium oxide with different adhesive peptides: surface characterization and osteoblast-like cell adhesion.
    Dettin M; Bagno A; Gambaretto R; Iucci G; Conconi MT; Tuccitto N; Menti AM; Grandi C; Di Bello C; Licciardello A; Polzonetti G
    J Biomed Mater Res A; 2009 Jul; 90(1):35-45. PubMed ID: 18481788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional immobilization and patterning of proteins by an enzymatic transfer reaction.
    Waichman S; Bhagawati M; Podoplelova Y; Reichel A; Brunk A; Paterok D; Piehler J
    Anal Chem; 2010 Feb; 82(4):1478-85. PubMed ID: 20092261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. (Bio)molecular surface patterning by phototriggered oxime ligation.
    Pauloehrl T; Delaittre G; Bruns M; Meißler M; Börner HG; Bastmeyer M; Barner-Kowollik C
    Angew Chem Int Ed Engl; 2012 Sep; 51(36):9181-4. PubMed ID: 22890544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemoselective protein and peptide immobilization on biosensor surfaces.
    Lempens EH; Helms BA; Merkx M
    Methods Mol Biol; 2011; 751():401-20. PubMed ID: 21674345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface patterning of (bio)molecules onto the inner wall of fused-silica capillary tubes.
    Dendane N; Hoang A; Renaudet O; Vinet F; Dumy P; Defrancq E
    Lab Chip; 2008 Dec; 8(12):2161-3. PubMed ID: 19023481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomembrane interactions reveal the mechanism of action of surface-immobilized host defense IDR-1010 peptide.
    Gao G; Cheng JT; Kindrachuk J; Hancock RE; Straus SK; Kizhakkedathu JN
    Chem Biol; 2012 Feb; 19(2):199-209. PubMed ID: 22365603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conjugation of peptides to the passivation shell of gold nanoparticles for targeting of cell-surface receptors.
    Maus L; Dick O; Bading H; Spatz JP; Fiammengo R
    ACS Nano; 2010 Nov; 4(11):6617-28. PubMed ID: 20939520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientation-controlled conjugation of haloalkane dehalogenase fused homing peptides to multifunctional nanoparticles for the specific recognition of cancer cells.
    Mazzucchelli S; Colombo M; Verderio P; Rozek E; Andreata F; Galbiati E; Tortora P; Corsi F; Prosperi D
    Angew Chem Int Ed Engl; 2013 Mar; 52(11):3121-5. PubMed ID: 23386453
    [No Abstract]   [Full Text] [Related]  

  • 17. Reactive landing of peptide ions on self-assembled monolayer surfaces: an alternative approach for covalent immobilization of peptides on surfaces.
    Wang P; Hadjar O; Gassman PL; Laskin J
    Phys Chem Chem Phys; 2008 Mar; 10(11):1512-22. PubMed ID: 18327307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quartz crystal microbalance (QCM): useful for developing procedures for immobilization of proteins on solid surfaces.
    Sha X; Sun C; Xu X; Alexander L; Loll PJ; Penn LS
    Anal Chem; 2012 Dec; 84(23):10298-305. PubMed ID: 23121645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adding spatial control to click chemistry: phototriggered Diels-Alder surface (bio)functionalization at ambient temperature.
    Pauloehrl T; Delaittre G; Winkler V; Welle A; Bruns M; Börner HG; Greiner AM; Bastmeyer M; Barner-Kowollik C
    Angew Chem Int Ed Engl; 2012 Jan; 51(4):1071-4. PubMed ID: 22162029
    [No Abstract]   [Full Text] [Related]  

  • 20. Photoactivation of alkyl C-H and silanization: a simple and general route to prepare high-density primary amines on inert polymer surfaces for protein immobilization.
    Gan S; Yang P; Yang W
    Biomacromolecules; 2009 May; 10(5):1238-43. PubMed ID: 19317482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.