These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 23893807)

  • 1. Frequency analysis of capnogram signals to differentiate asthmatic and non-asthmatic conditions using radial basis function neural networks.
    Kazemi M; Bala Krishnan M; Aik Howe T
    Iran J Allergy Asthma Immunol; 2013 Jul; 12(3):236-46. PubMed ID: 23893807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated quantitative analysis of capnogram shape for COPD-normal and COPD-CHF classification.
    Mieloszyk RJ; Verghese GC; Deitch K; Cooney B; Khalid A; Mirre-Gonzalez MA; Heldt T; Krauss BS
    IEEE Trans Biomed Eng; 2014 Dec; 61(12):2882-90. PubMed ID: 24967981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segmentation and classification of capnograms: application in respiratory variability analysis.
    Herry CL; Townsend D; Green GC; Bravi A; Seely AJ
    Physiol Meas; 2014 Dec; 35(12):2343-58. PubMed ID: 25389703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing.
    Subasi A; Alkan A; Koklukaya E; Kiymik MK
    Neural Netw; 2005 Sep; 18(7):985-97. PubMed ID: 15921885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining segments and phases of a time capnogram.
    Bhavani-Shankar K; Philip JH
    Anesth Analg; 2000 Oct; 91(4):973-7. PubMed ID: 11004059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Expiratory capnography in asthma. Perspectives in the use and monitoring in children].
    You B; Mayeux D; Rkiek B; Autran N; Dang Vu V; Grilliat JP
    Rev Mal Respir; 1992; 9(5):547-52. PubMed ID: 1439095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Considerations for developing a clinical capnogram monitoring system.
    Goldman JM
    Biomed Sci Instrum; 1997; 34():197-200. PubMed ID: 9603038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of asthmatic breath sounds: preliminary results of the classifying capacity of human examiners versus artificial neural networks.
    Rietveld S; Oud M; Dooijes EH
    Comput Biomed Res; 1999 Oct; 32(5):440-8. PubMed ID: 10529301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
    Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG
    Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved gene prediction by principal component analysis based autoregressive Yule-Walker method.
    Roy M; Barman S
    Gene; 2016 Jan; 575(2 Pt 2):488-497. PubMed ID: 26385320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radial basis function neural networks applied to efficient QRST cancellation in atrial fibrillation.
    Mateo J; Rieta JJ
    Comput Biol Med; 2013 Feb; 43(2):154-63. PubMed ID: 23228480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The predictive value of IgE as biomarker in asthma.
    Ahmad Al Obaidi AH; Mohamed Al Samarai AG; Yahya Al Samarai AK; Al Janabi JM
    J Asthma; 2008 Oct; 45(8):654-63. PubMed ID: 18951256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of EEG signals using neural network and logistic regression.
    Subasi A; Erçelebi E
    Comput Methods Programs Biomed; 2005 May; 78(2):87-99. PubMed ID: 15848265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The significance of volumetric capnography in assessment of asthmatic acute exacerbation staging].
    Liu JM; Hu HC; Shi MH; Yang WL; Zheng W; Wang YM
    Zhonghua Jie He He Hu Xi Za Zhi; 2008 Mar; 31(3):186-90. PubMed ID: 18785516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of the airway obstruction stage in asthma using impulse oscillometry system.
    Qi GS; Zhou ZC; Gu WC; Xi F; Wu H; Yang WL; Liu JM
    J Asthma; 2013 Feb; 50(1):45-51. PubMed ID: 23189951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic classification of regular and irregular capnogram segments using time- and frequency-domain features: A machine learning-based approach.
    El-Badawy IM; Singh OP; Omar Z
    Technol Health Care; 2021; 29(1):59-72. PubMed ID: 32716337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new method for automatic wheeze detection.
    Waris M; Helistö P; Haltsonen S; Saarinen A; Sovijärvi AR
    Technol Health Care; 1998 Jun; 6(1):33-40. PubMed ID: 9754682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autonomic regulation after exercise evidenced by spectral analysis of heart rate variability in asthmatic children.
    Fujii H; Fukutomi O; Inoue R; Shinoda S; Okammoto H; Teramoto T; Kondo N; Wada H; Saito K; Matsuoka T; Seishima M
    Ann Allergy Asthma Immunol; 2000 Sep; 85(3):233-7. PubMed ID: 11030279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a complex bioimpedance spectrometer using DFT and undersampling for neural networks diagnostics.
    do Amaral CE; Lopes HS; Arruda LV; Hara MS; Gonçalves AJ; Dias AA
    Med Eng Phys; 2011 Apr; 33(3):356-61. PubMed ID: 21146438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A scoring system for capnogram biofeedback: preliminary findings.
    Landis B; Romano PM
    Appl Psychophysiol Biofeedback; 1998 Jun; 23(2):75-91. PubMed ID: 9789622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.