BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23893827)

  • 1. Structural and dynamic properties of monoclonal antibodies immobilized on CNTs: a computational study.
    De Leo F; Sgrignani J; Bonifazi D; Magistrato A
    Chemistry; 2013 Sep; 19(37):12281-93. PubMed ID: 23893827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of arginine in mediating protein-carbon nanotube interactions.
    Wu E; Coppens MO; Garde S
    Langmuir; 2015 Feb; 31(5):1683-92. PubMed ID: 25575129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulation of doxorubicin adsorption on a bundle of functionalized CNT.
    Izadyar A; Farhadian N; Chenarani N
    J Biomol Struct Dyn; 2016 Aug; 34(8):1797-805. PubMed ID: 26375507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of Triton X-series surfactants and its role in stabilizing multi-walled carbon nanotube suspensions.
    Bai Y; Lin D; Wu F; Wang Z; Xing B
    Chemosphere; 2010 Apr; 79(4):362-7. PubMed ID: 20206374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The devil and holy water: protein and carbon nanotube hybrids.
    Calvaresi M; Zerbetto F
    Acc Chem Res; 2013 Nov; 46(11):2454-63. PubMed ID: 23826731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The functionalization of carbon nanotubes to enhance the efficacy of the anticancer drug paclitaxel: a molecular dynamics simulation study.
    Hashemzadeh H; Raissi H
    J Mol Model; 2017 Aug; 23(8):222. PubMed ID: 28702805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium hexadecyl sulfate as an interfacial substance adjusting the adsorption of a protein on carbon nanotubes.
    Sun J; Du K; Fu L; Gao J; Zhang H; Feng W; Ji P
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15132-9. PubMed ID: 25126993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Structured Water Layers on Protein Adsorption Process: A Case Study of Cytochrome
    Zhang C; Li X; Wang Z; Huang X; Ge Z; Hu B
    J Phys Chem B; 2020 Jan; 124(4):684-694. PubMed ID: 31880460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of insulin peptide on charged single-walled carbon nanotubes: significant role of ordered water molecules.
    Shen JW; Wu T; Wang Q; Kang Y; Chen X
    Chemphyschem; 2009 Jun; 10(8):1260-9. PubMed ID: 19353602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multiscale simulation study of carbon nanotube interactions with designed amphiphilic peptide helices.
    Wallace EJ; D'Rozario RS; Sanchez BM; Sansom MS
    Nanoscale; 2010 Jun; 2(6):967-75. PubMed ID: 20648294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization of d-lactate dehydrogenase diagnostic enzyme via immobilization on pristine and carboxyl-functionalized carbon nanotubes, a combined experimental and molecular dynamics simulation study.
    Zaboli M; Raissi H; Zaboli M; Farzad F; Torkzadeh-Mahani M
    Arch Biochem Biophys; 2019 Jan; 661():178-186. PubMed ID: 30472239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein G selects two binding sites for carbon nanotube with dissimilar behavior; a molecular dynamics study.
    Ebrahim-Habibi MB; Ghobeh M; Aghakhani Mahyari F; Rafii-Tabar H; Sasanpour P
    J Mol Graph Model; 2019 Mar; 87():257-267. PubMed ID: 30594774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-dependent impact of CNTs on dynamic properties of calmodulin.
    Gao J; Wang L; Kang SG; Zhao L; Ji M; Chen C; Zhao Y; Zhou R; Li J
    Nanoscale; 2014 Nov; 6(21):12828-37. PubMed ID: 25225777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulation of non-covalent single-walled carbon nanotube functionalization with surfactant peptides.
    Barzegar A; Mansouri A; Azamat J
    J Mol Graph Model; 2016 Mar; 64():75-84. PubMed ID: 26811869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of chiral nanotubes with an opposite handedness by chiral oligopeptide adsorption: A molecular dynamics study.
    Raffaini G; Ganazzoli F
    J Chromatogr A; 2015 Dec; 1425():221-30. PubMed ID: 26627588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersion of carbon nanotubes using mixed surfactants: experimental and molecular dynamics simulation studies.
    Sohrabi B; Poorgholami-Bejarpasi N; Nayeri N
    J Phys Chem B; 2014 Mar; 118(11):3094-103. PubMed ID: 24555914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational study of a nanobiosensor: a single-walled carbon nanotube functionalized with the coxsackie-adenovirus receptor.
    Johnson RR; Rego BJ; Johnson AT; Klein ML
    J Phys Chem B; 2009 Aug; 113(34):11589-93. PubMed ID: 19435308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling water flow inside carbon nanotube with lipid membranes.
    Feng JW; Ding HM; Ma YQ
    J Chem Phys; 2014 Sep; 141(9):094901. PubMed ID: 25194388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds.
    Park S; Park J; Jo I; Cho SP; Sung D; Ryu S; Park M; Min KA; Kim J; Hong S; Hong BH; Kim BS
    Biomaterials; 2015 Jul; 58():93-102. PubMed ID: 25941786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the vibrational behavior of single- and double-walled carbon nanotubes under the physical adsorption of biomolecules in the aqueous environment: a molecular dynamics study.
    Ajori S; Ansari R; Darvizeh M
    J Mol Model; 2016 Mar; 22(3):62. PubMed ID: 26898713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.