These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. A droplet microfluidic system for sequential generation of lipid bilayers and transmembrane electrical recordings. Czekalska MA; Kaminski TS; Jakiela S; Tanuj Sapra K; Bayley H; Garstecki P Lab Chip; 2015 Jan; 15(2):541-8. PubMed ID: 25412368 [TBL] [Abstract][Full Text] [Related]
25. Microfluidic mixing and the formation of nanoscale lipid vesicles. Jahn A; Stavis SM; Hong JS; Vreeland WN; DeVoe DL; Gaitan M ACS Nano; 2010 Apr; 4(4):2077-87. PubMed ID: 20356060 [TBL] [Abstract][Full Text] [Related]
26. A Noncontact Picolitor Droplet Handling by Photothermal Control of Interfacial Flow. Muto M; Yamamoto M; Motosuke M Anal Sci; 2016; 32(1):49-55. PubMed ID: 26753705 [TBL] [Abstract][Full Text] [Related]
27. High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Yobas L; Martens S; Ong WL; Ranganathan N Lab Chip; 2006 Aug; 6(8):1073-9. PubMed ID: 16874381 [TBL] [Abstract][Full Text] [Related]
28. A Bacterial Continuous Culture System Based on a Microfluidic Droplet Open Reactor. Ito M; Sugiura H; Ayukawa S; Kiga D; Takinoue M Anal Sci; 2016; 32(1):61-6. PubMed ID: 26753707 [TBL] [Abstract][Full Text] [Related]
29. A facile route to the synthesis of monodisperse nanoscale liposomes using 3D microfluidic hydrodynamic focusing in a concentric capillary array. Hood RR; DeVoe DL; Atencia J; Vreeland WN; Omiatek DM Lab Chip; 2014 Jul; 14(14):2403-9. PubMed ID: 24825622 [TBL] [Abstract][Full Text] [Related]
30. High-Efficiency and High-Throughput On-Chip Exchange of the Continuous Phase in Droplet Microfluidic Systems. Kim M; Leong CM; Pan M; Blauch LR; Tang SKY SLAS Technol; 2017 Oct; 22(5):529-535. PubMed ID: 28402212 [TBL] [Abstract][Full Text] [Related]
31. Shear-driven redistribution of surfactant affects enzyme activity in well-mixed femtoliter droplets. Liu Y; Jung SY; Collier CP Anal Chem; 2009 Jun; 81(12):4922-8. PubMed ID: 19441820 [TBL] [Abstract][Full Text] [Related]
33. Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis. Funakoshi K; Suzuki H; Takeuchi S Anal Chem; 2006 Dec; 78(24):8169-74. PubMed ID: 17165804 [TBL] [Abstract][Full Text] [Related]
34. Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels. Maenaka H; Yamada M; Yasuda M; Seki M Langmuir; 2008 Apr; 24(8):4405-10. PubMed ID: 18327961 [TBL] [Abstract][Full Text] [Related]
36. Electric field assisted multicomponent reaction in a microfluidic reactor for superior conversion and yield. Maity S; Chaudhuri J; Mitra S; Rarotra S; Bandyopadhyay D Electrophoresis; 2019 Feb; 40(3):401-409. PubMed ID: 30511476 [TBL] [Abstract][Full Text] [Related]
37. Microfluidic-assisted synthesis of hemispherical and discoidal chitosan microparticles at an oil/water interface. Yang CH; Huang KS; Wang CY; Hsu YY; Chang FR; Lin YS Electrophoresis; 2012 Nov; 33(21):3173-80. PubMed ID: 22949174 [TBL] [Abstract][Full Text] [Related]
38. An "off-the-shelf" capillary microfluidic device that enables tuning of the droplet breakup regime at constant flow rates. Benson BR; Stone HA; Prud'homme RK Lab Chip; 2013 Dec; 13(23):4507-11. PubMed ID: 24122050 [TBL] [Abstract][Full Text] [Related]
39. Interfacial tension controlled W/O and O/W 2-phase flows in microchannel. Shui L; van den Berg A; Eijkel JC Lab Chip; 2009 Mar; 9(6):795-801. PubMed ID: 19255661 [TBL] [Abstract][Full Text] [Related]