These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 23894078)
1. The stimulation of osteogenic differentiation of mesenchymal stem cells and vascular endothelial growth factor secretion of endothelial cells by β-CaSiO3/β-Ca3(PO4)2 scaffolds. Wang C; Lin K; Chang J; Sun J J Biomed Mater Res A; 2014 Jul; 102(7):2096-104. PubMed ID: 23894078 [TBL] [Abstract][Full Text] [Related]
2. Osteogenesis and angiogenesis induced by porous β-CaSiO(3)/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways. Wang C; Lin K; Chang J; Sun J Biomaterials; 2013 Jan; 34(1):64-77. PubMed ID: 23069715 [TBL] [Abstract][Full Text] [Related]
3. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics. Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627 [TBL] [Abstract][Full Text] [Related]
4. Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of β-tricalcium phosphate for bone cement by calcium silicate. Su CC; Kao CT; Hung CJ; Chen YJ; Huang TH; Shie MY Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():156-63. PubMed ID: 24582235 [TBL] [Abstract][Full Text] [Related]
5. Silicate bioceramics enhanced vascularization and osteogenesis through stimulating interactions between endothelia cells and bone marrow stromal cells. Li H; Xue K; Kong N; Liu K; Chang J Biomaterials; 2014 Apr; 35(12):3803-18. PubMed ID: 24486216 [TBL] [Abstract][Full Text] [Related]
6. Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics. Lin K; Xia L; Li H; Jiang X; Pan H; Xu Y; Lu WW; Zhang Z; Chang J Biomaterials; 2013 Dec; 34(38):10028-42. PubMed ID: 24095251 [TBL] [Abstract][Full Text] [Related]
7. Osteogenic and angiogenic potentials of monocultured and co-cultured human-bone-marrow-derived mesenchymal stem cells and human-umbilical-vein endothelial cells on three-dimensional porous beta-tricalcium phosphate scaffold. Kang Y; Kim S; Fahrenholtz M; Khademhosseini A; Yang Y Acta Biomater; 2013 Jan; 9(1):4906-15. PubMed ID: 22902820 [TBL] [Abstract][Full Text] [Related]
8. Human urine-derived stem cells can be induced into osteogenic lineage by silicate bioceramics via activation of the Wnt/β-catenin signaling pathway. Guan J; Zhang J; Guo S; Zhu H; Zhu Z; Li H; Wang Y; Zhang C; Chang J Biomaterials; 2015 Jul; 55():1-11. PubMed ID: 25934447 [TBL] [Abstract][Full Text] [Related]
9. Osteogenic differentiation of osteoblasts induced by calcium silicate and calcium silicate/β-tricalcium phosphate composite bioceramics. Fei L; Wang C; Xue Y; Lin K; Chang J; Sun J J Biomed Mater Res B Appl Biomater; 2012 Jul; 100(5):1237-44. PubMed ID: 22454365 [TBL] [Abstract][Full Text] [Related]
10. The calcium silicate/alginate composite: preparation and evaluation of its behavior as bioactive injectable hydrogels. Han Y; Zeng Q; Li H; Chang J Acta Biomater; 2013 Nov; 9(11):9107-17. PubMed ID: 23796407 [TBL] [Abstract][Full Text] [Related]
11. 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone. Li T; Peng M; Yang Z; Zhou X; Deng Y; Jiang C; Xiao M; Wang J Acta Biomater; 2018 Apr; 71():96-107. PubMed ID: 29549051 [TBL] [Abstract][Full Text] [Related]
12. Using calcium silicate to regulate the physicochemical and biological properties when using β-tricalcium phosphate as bone cement. Kao CT; Huang TH; Chen YJ; Hung CJ; Lin CC; Shie MY Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():126-34. PubMed ID: 25175197 [TBL] [Abstract][Full Text] [Related]
13. 3D printed scaffolds of calcium silicate-doped β-TCP synergize with co-cultured endothelial and stromal cells to promote vascularization and bone formation. Deng Y; Jiang C; Li C; Li T; Peng M; Wang J; Dai K Sci Rep; 2017 Jul; 7(1):5588. PubMed ID: 28717129 [TBL] [Abstract][Full Text] [Related]
14. Beta-CaSiO3/beta-Ca3(PO4)2 composite materials for hard tissue repair: in vitro studies. Ni S; Lin K; Chang J; Chou L J Biomed Mater Res A; 2008 Apr; 85(1):72-82. PubMed ID: 17688291 [TBL] [Abstract][Full Text] [Related]
15. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats. Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167 [TBL] [Abstract][Full Text] [Related]
16. The interactions between rat-adipose-derived stromal cells, recombinant human bone morphogenetic protein-2, and beta-tricalcium phosphate play an important role in bone tissue engineering. E LL; Xu LL; Wu X; Wang DS; Lv Y; Wang JZ; Liu HC Tissue Eng Part A; 2010 Sep; 16(9):2927-40. PubMed ID: 20486786 [TBL] [Abstract][Full Text] [Related]
17. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis. Zhang Y; Xia L; Zhai D; Shi M; Luo Y; Feng C; Fang B; Yin J; Chang J; Wu C Nanoscale; 2015 Dec; 7(45):19207-21. PubMed ID: 26525451 [TBL] [Abstract][Full Text] [Related]
18. Supercritical CO Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054 [TBL] [Abstract][Full Text] [Related]
19. In vitro assessment of three-dimensionally plotted nagelschmidtite bioceramic scaffolds with varied macropore morphologies. Xu M; Zhai D; Chang J; Wu C Acta Biomater; 2014 Jan; 10(1):463-76. PubMed ID: 24071000 [TBL] [Abstract][Full Text] [Related]
20. Tissue-engineered bone formation using human bone marrow stromal cells and novel beta-tricalcium phosphate. Liu G; Zhao L; Cui L; Liu W; Cao Y Biomed Mater; 2007 Jun; 2(2):78-86. PubMed ID: 18458439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]