These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 23894098)
1. Microstructure, mechanical property, biodegradation behavior, and biocompatibility of biodegradable Fe-Fe2O3 composites. Cheng J; Huang T; Zheng YF J Biomed Mater Res A; 2014 Jul; 102(7):2277-87. PubMed ID: 23894098 [TBL] [Abstract][Full Text] [Related]
2. In vitro degradation and biocompatibility of Fe-Pd and Fe-Pt composites fabricated by spark plasma sintering. Huang T; Cheng J; Zheng YF Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():43-53. PubMed ID: 24411350 [TBL] [Abstract][Full Text] [Related]
3. In vitro study on newly designed biodegradable Fe-X composites (X = W, CNT) prepared by spark plasma sintering. Cheng J; Zheng YF J Biomed Mater Res B Appl Biomater; 2013 May; 101(4):485-97. PubMed ID: 23359385 [TBL] [Abstract][Full Text] [Related]
4. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Liu B; Zheng YF Acta Biomater; 2011 Mar; 7(3):1407-20. PubMed ID: 21056126 [TBL] [Abstract][Full Text] [Related]
5. Fe-Au and Fe-Ag composites as candidates for biodegradable stent materials. Huang T; Cheng J; Bian D; Zheng Y J Biomed Mater Res B Appl Biomater; 2016 Feb; 104(2):225-40. PubMed ID: 25727071 [TBL] [Abstract][Full Text] [Related]
6. Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application. Zhou WR; Zheng YF; Leeflang MA; Zhou J Acta Biomater; 2013 Nov; 9(10):8488-98. PubMed ID: 23385218 [TBL] [Abstract][Full Text] [Related]
7. In vitro and in vivo degradation evaluation of novel iron-bioceramic composites for bone implant applications. Ulum MF; Arafat A; Noviana D; Yusop AH; Nasution AK; Abdul Kadir MR; Hermawan H Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():336-44. PubMed ID: 24433920 [TBL] [Abstract][Full Text] [Related]
8. Electroformed iron as new biomaterial for degradable stents: development process and structure-properties relationship. Moravej M; Prima F; Fiset M; Mantovani D Acta Biomater; 2010 May; 6(5):1726-35. PubMed ID: 20085829 [TBL] [Abstract][Full Text] [Related]
9. Effect of electrolyte composition and deposition current for Fe/Fe-P electroformed bilayers for biodegradable metallic medical applications. Mostavan A; Paternoster C; Tolouei R; Ghali E; Dubé D; Mantovani D Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):195-206. PubMed ID: 27770881 [TBL] [Abstract][Full Text] [Related]
10. Influence of cross-rolling on the micro-texture and biodegradation of pure iron as biodegradable material for medical implants. Obayi CS; Tolouei R; Paternoster C; Turgeon S; Okorie BA; Obikwelu DO; Cassar G; Buhagiar J; Mantovani D Acta Biomater; 2015 Apr; 17():68-77. PubMed ID: 25644452 [TBL] [Abstract][Full Text] [Related]
11. Microstructure, mechanical and bio-corrosion properties of Mn-doped Mg-Zn-Ca bulk metallic glass composites. Wang J; Huang S; Li Y; Wei Y; Xi X; Cai K Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3832-8. PubMed ID: 23910284 [TBL] [Abstract][Full Text] [Related]
12. Synthesis, mechanical properties and corrosion behavior of powder metallurgy processed Fe/Mg Sikora-Jasinska M; Paternoster C; Mostaed E; Tolouei R; Casati R; Vedani M; Mantovani D Mater Sci Eng C Mater Biol Appl; 2017 Dec; 81():511-521. PubMed ID: 28888005 [TBL] [Abstract][Full Text] [Related]
13. Effect of grain sizes on mechanical properties and biodegradation behavior of pure iron for cardiovascular stent application. Obayi CS; Tolouei R; Mostavan A; Paternoster C; Turgeon S; Okorie BA; Obikwelu DO; Mantovani D Biomatter; 2016; 6(1):e959874. PubMed ID: 25482336 [TBL] [Abstract][Full Text] [Related]
14. A study of cytocompatibility and degradation of iron-based biodegradable materials. Oriňaková R; Oriňak A; Giretová M; Medvecký L; Kupková M; Hrubovčáková M; Maskal'ová I; Macko J; Kal'avský F J Biomater Appl; 2016 Feb; 30(7):1060-70. PubMed ID: 26553881 [TBL] [Abstract][Full Text] [Related]
15. Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents. Hermawan H; Dubé D; Mantovani D J Biomed Mater Res A; 2010 Apr; 93(1):1-11. PubMed ID: 19437432 [TBL] [Abstract][Full Text] [Related]
16. Potential application of highly reactive Fe(0)/Fe3O4 composites for the reduction of Cr(VI) environmental contaminants. Dos Santos Coelho F; Ardisson JD; Moura FC; Lago RM; Murad E; Fabris JD Chemosphere; 2008 Mar; 71(1):90-6. PubMed ID: 18061239 [TBL] [Abstract][Full Text] [Related]
17. A manufacturing and annealing protocol to develop a cold-sprayed Fe-316L stainless steel biodegradable stenting material. Frattolin J; Roy R; Rajagopalan S; Walsh M; Yue S; Bertrand OF; Mongrain R Acta Biomater; 2019 Nov; 99():479-494. PubMed ID: 31449928 [TBL] [Abstract][Full Text] [Related]
18. Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-D printing. Chou DT; Wells D; Hong D; Lee B; Kuhn H; Kumta PN Acta Biomater; 2013 Nov; 9(10):8593-603. PubMed ID: 23624222 [TBL] [Abstract][Full Text] [Related]
19. [Analysis of the characteristics of corrosion scale in drinking water distribution systems]. Niu ZB; Wang Y; Zhang XJ; He WJ; Han HD; Yin PJ Huan Jing Ke Xue; 2006 Jun; 27(6):1150-4. PubMed ID: 16921952 [TBL] [Abstract][Full Text] [Related]
20. Acoustic emission analysis of the compressive deformation of iron foams and their biocompatibility study. Park H; Hong K; Kang JS; Um T; Knapek M; Minárik P; Sung YE; Máthis K; Yamamoto A; Kim HK; Choe H Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():367-376. PubMed ID: 30678922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]