These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 23895048)

  • 1. Encoding binary neural codes in networks of threshold-linear neurons.
    Curto C; Degeratu A; Itskov V
    Neural Comput; 2013 Nov; 25(11):2858-903. PubMed ID: 23895048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A no-go theorem for one-layer feedforward networks.
    Giusti C; Itskov V
    Neural Comput; 2014 Nov; 26(11):2527-40. PubMed ID: 25149704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical network modeling: analytical methods for firing rates and some properties of networks of LIF neurons.
    Tuckwell HC
    J Physiol Paris; 2006; 100(1-3):88-99. PubMed ID: 17064883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Memory dynamics in attractor networks with saliency weights.
    Tang H; Li H; Yan R
    Neural Comput; 2010 Jul; 22(7):1899-926. PubMed ID: 20235821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A learning rule for very simple universal approximators consisting of a single layer of perceptrons.
    Auer P; Burgsteiner H; Maass W
    Neural Netw; 2008 Jun; 21(5):786-95. PubMed ID: 18249524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks.
    Alemi A; Baldassi C; Brunel N; Zecchina R
    PLoS Comput Biol; 2015 Aug; 11(8):e1004439. PubMed ID: 26291608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Permitted and forbidden sets in symmetric threshold-linear networks.
    Hahnloser RH; Seung HS; Slotine JJ
    Neural Comput; 2003 Mar; 15(3):621-38. PubMed ID: 12620160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The neural ring: an algebraic tool for analyzing the intrinsic structure of neural codes.
    Curto C; Itskov V; Veliz-Cuba A; Youngs N
    Bull Math Biol; 2013 Sep; 75(9):1571-611. PubMed ID: 23771614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning only when necessary: better memories of correlated patterns in networks with bounded synapses.
    Senn W; Fusi S
    Neural Comput; 2005 Oct; 17(10):2106-38. PubMed ID: 16105220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time neural coding of memory.
    Tsien JZ
    Prog Brain Res; 2007; 165():105-22. PubMed ID: 17925242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orientation tuning properties of simple cells in area V1 derived from an approximate analysis of nonlinear neural field models.
    Wennekers T
    Neural Comput; 2001 Aug; 13(8):1721-47. PubMed ID: 11506668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selectively grouping neurons in recurrent networks of lateral inhibition.
    Xie X; Hahnloser RH; Seung HS
    Neural Comput; 2002 Nov; 14(11):2627-46. PubMed ID: 12433293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reading the book of memory: sparse sampling versus dense mapping of connectomes.
    Seung HS
    Neuron; 2009 Apr; 62(1):17-29. PubMed ID: 19376064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autoassociative memory retrieval and spontaneous activity bumps in small-world networks of integrate-and-fire neurons.
    Anishchenko A; Treves A
    J Physiol Paris; 2006 Oct; 100(4):225-36. PubMed ID: 17320359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational differences between asymmetrical and symmetrical networks.
    Li Z; Dayan P
    Network; 1999 Feb; 10(1):59-77. PubMed ID: 10372762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of possible neural architectures underlying information-geometric measures.
    Tatsuno M; Okada M
    Neural Comput; 2004 Apr; 16(4):737-65. PubMed ID: 15025828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sparse and powerful cortical spikes.
    Wolfe J; Houweling AR; Brecht M
    Curr Opin Neurobiol; 2010 Jun; 20(3):306-12. PubMed ID: 20400290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Storing cycles in Hopfield-type networks with pseudoinverse learning rule: admissibility and network topology.
    Zhang C; Dangelmayr G; Oprea I
    Neural Netw; 2013 Oct; 46():283-98. PubMed ID: 23872430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergence of optimal decoding of population codes through STDP.
    Habenschuss S; Puhr H; Maass W
    Neural Comput; 2013 Jun; 25(6):1371-407. PubMed ID: 23517096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.