These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 23895194)
1. 3D culturing and differentiation of SH-SY5Y neuroblastoma cells on bacterial nanocellulose scaffolds. Innala M; Riebe I; Kuzmenko V; Sundberg J; Gatenholm P; Hanse E; Johannesson S Artif Cells Nanomed Biotechnol; 2014 Oct; 42(5):302-8. PubMed ID: 23895194 [TBL] [Abstract][Full Text] [Related]
2. Neuronal Networks on Nanocellulose Scaffolds. Jonsson M; Brackmann C; Puchades M; Brattås K; Ewing A; Gatenholm P; Enejder A Tissue Eng Part C Methods; 2015 Nov; 21(11):1162-70. PubMed ID: 26398224 [TBL] [Abstract][Full Text] [Related]
3. Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo. Martínez Ávila H; Feldmann EM; Pleumeekers MM; Nimeskern L; Kuo W; de Jong WC; Schwarz S; Müller R; Hendriks J; Rotter N; van Osch GJ; Stok KS; Gatenholm P Biomaterials; 2015 Mar; 44():122-33. PubMed ID: 25617132 [TBL] [Abstract][Full Text] [Related]
4. Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants. Ahrem H; Pretzel D; Endres M; Conrad D; Courseau J; Müller H; Jaeger R; Kaps C; Klemm DO; Kinne RW Acta Biomater; 2014 Mar; 10(3):1341-53. PubMed ID: 24334147 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation. Fu L; Zhou P; Zhang S; Yang G Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2995-3000. PubMed ID: 23623124 [TBL] [Abstract][Full Text] [Related]
7. 3D Printed Conductive Nanocellulose Scaffolds for the Differentiation of Human Neuroblastoma Cells. Bordoni M; Karabulut E; Kuzmenko V; Fantini V; Pansarasa O; Cereda C; Gatenholm P Cells; 2020 Mar; 9(3):. PubMed ID: 32168750 [TBL] [Abstract][Full Text] [Related]
8. In situ synthesis of photocatalytically active hybrids consisting of bacterial nanocellulose and anatase nanoparticles. Wesarg F; Schlott F; Grabow J; Kurland HD; Heßler N; Kralisch D; Müller FA Langmuir; 2012 Sep; 28(37):13518-25. PubMed ID: 22925063 [TBL] [Abstract][Full Text] [Related]
9. Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Martínez Ávila H; Schwarz S; Feldmann EM; Mantas A; von Bomhard A; Gatenholm P; Rotter N Appl Microbiol Biotechnol; 2014 Sep; 98(17):7423-35. PubMed ID: 24866945 [TBL] [Abstract][Full Text] [Related]
10. Engineering microporosity in bacterial cellulose scaffolds. Bäckdahl H; Esguerra M; Delbro D; Risberg B; Gatenholm P J Tissue Eng Regen Med; 2008 Aug; 2(6):320-30. PubMed ID: 18615821 [TBL] [Abstract][Full Text] [Related]
11. In situ biosynthesis of bacterial nanocellulose-CaCO3 hybrid bionanocomposite: One-step process. Mohammadkazemi F; Faria M; Cordeiro N Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():393-9. PubMed ID: 27157766 [TBL] [Abstract][Full Text] [Related]
12. Using in situ nanocellulose-coating technology based on dynamic bacterial cultures for upgrading conventional biomedical materials and reinforcing nanocellulose hydrogels. Zhang P; Chen L; Zhang Q; Jönsson LJ; Hong FF Biotechnol Prog; 2016 Jul; 32(4):1077-84. PubMed ID: 27088548 [TBL] [Abstract][Full Text] [Related]
13. Tolerance of the nanocellulose-producing bacterium Gluconacetobacter xylinus to lignocellulose-derived acids and aldehydes. Zhang S; Winestrand S; Chen L; Li D; Jönsson LJ; Hong F J Agric Food Chem; 2014 Oct; 62(40):9792-9. PubMed ID: 25186182 [TBL] [Abstract][Full Text] [Related]
14. Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. Nimeskern L; Martínez Ávila H; Sundberg J; Gatenholm P; Müller R; Stok KS J Mech Behav Biomed Mater; 2013 Jun; 22():12-21. PubMed ID: 23611922 [TBL] [Abstract][Full Text] [Related]
15. Complete genome sequence of Gluconacetobacter xylinus E25 strain--valuable and effective producer of bacterial nanocellulose. Kubiak K; Kurzawa M; Jędrzejczak-Krzepkowska M; Ludwicka K; Krawczyk M; Migdalski A; Kacprzak MM; Loska D; Krystynowicz A; Bielecki S J Biotechnol; 2014 Apr; 176():18-9. PubMed ID: 24556328 [TBL] [Abstract][Full Text] [Related]
16. Physicochemical Properties and In Vitro Biocompatibility of Three Bacterial Nanocellulose Conduits for Blood Vessel Applications. Bao L; Tang J; Hong FF; Lu X; Chen L Carbohydr Polym; 2020 Jul; 239():116246. PubMed ID: 32414454 [TBL] [Abstract][Full Text] [Related]
17. The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. Müller A; Ni Z; Hessler N; Wesarg F; Müller FA; Kralisch D; Fischer D J Pharm Sci; 2013 Feb; 102(2):579-92. PubMed ID: 23192666 [TBL] [Abstract][Full Text] [Related]
18. "Nanocellulose" as a single nanofiber prepared from pellicle secreted by Gluconacetobacter xylinus using aqueous counter collision. Kose R; Mitani I; Kasai W; Kondo T Biomacromolecules; 2011 Mar; 12(3):716-20. PubMed ID: 21314117 [TBL] [Abstract][Full Text] [Related]
19. Adipogenic differentiation of stem cells in three-dimensional porous bacterial nanocellulose scaffolds. Krontiras P; Gatenholm P; Hägg DA J Biomed Mater Res B Appl Biomater; 2015 Jan; 103(1):195-203. PubMed ID: 24819827 [TBL] [Abstract][Full Text] [Related]
20. A uniaxially oriented nanofibrous cellulose scaffold from pellicles produced by Gluconacetobacter xylinus in dissolved oxygen culture. Nagashima A; Tsuji T; Kondo T Carbohydr Polym; 2016 Jan; 135():215-24. PubMed ID: 26453871 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]