These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 238952)

  • 1. Prosthecae of Asticcacaulis biprosthecum: system for the study of membrane transport.
    Porter JS; Pate JL
    J Bacteriol; 1975 Jun; 122(3):976-86. PubMed ID: 238952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose transport in isolated prosthecae of Asticcacaulis biprosthecum.
    Larson RJ; Pate JL
    J Bacteriol; 1976 Apr; 126(1):282-93. PubMed ID: 4425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid transport by prosthecae of Asticcacaulis biprosthecum: evidence for a broad-range transport system.
    Tam E; Pate JL
    J Gen Microbiol; 1985 Oct; 131(10):2687-99. PubMed ID: 4067576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The inhibitory effect of the artificial electron donor system, phenazine methosulfate-ascorbate, on bacterial transport mechanisms.
    Eagon RG; Gitter BD; Rowe JJ
    J Supramol Struct; 1977; 7(1):49-59. PubMed ID: 415185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of sugars and amino acids in bacteria. XV. Comparative studies on the effects of various energy poisons on the oxidative and phosphorylating activities and energy coupling reactions for the active transport systems for amino acids in E. coli.
    Anraku Y; Kin E; Tanaka Y
    J Biochem; 1975 Jul; 78(1):165-79. PubMed ID: 1104599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nature of the specificity of alcohol coupling to L-alanine transport into isolated membrane vesicles of a marine pseudomonad.
    Sprott GD; MacLeod RA
    J Bacteriol; 1974 Mar; 117(3):1043-54. PubMed ID: 4360536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamate transport in membrane vesicles of the wild-type strain and glutamate-utilizing mutants of Escherichia coli.
    Kahane S; Marcus M; Metzer E; Halpern YS
    J Bacteriol; 1976 Mar; 125(3):770-5. PubMed ID: 767326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetics of glycylglycine transport in Escherichia coli.
    Cowell JL
    J Bacteriol; 1974 Oct; 120(1):139-46. PubMed ID: 4278690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative transport activity of intact cells, membrane vesicles, and mesosomes of Bacillus licheniformis.
    MacLeod RA; Thurman P; Rogers HJ
    J Bacteriol; 1973 Jan; 113(1):329-40. PubMed ID: 4347247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active transport of oxalate by Pseudomonas oxalaticus OX1.
    Dijkhuizen L; Groen L; Harder W; Konings WN
    Arch Microbiol; 1977 Nov; 115(2):223-7. PubMed ID: 202212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active transport of calcium in inverted membrane vesicles of Escherichia coli.
    Rosen BP; McClees JS
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):5042-6. PubMed ID: 4373740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium-ion stimulated amino acid uptake in membrane vesicles of alkalophilic Bacillus no. 8-1.
    Kitada M; Horikoshi K
    J Biochem; 1980 Dec; 88(6):1757-64. PubMed ID: 6780545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of phenazine methosulfate-ascorbate on bacterial active transport and adenosine triphosphate formation: inhibition of Pseudomonas aeruginosa and stimulation of Escherichia coli.
    Eagon RG; Hodge TW; Rake JB; Yarbrough JM
    Can J Microbiol; 1979 Jul; 25(7):798-802. PubMed ID: 113071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron transport-linked compared with proton-induced ATP generation in Thiobacillus novellus.
    Cole JS; Aleem MI
    Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3571-5. PubMed ID: 4357881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active transport of alanine by thermostable membrane vesicles isolated from a thermophilic bacterium.
    Hirata H; Sone N; Yoshida M; Kagawa Y
    J Biochem; 1976 Jun; 79(6):1157-66. PubMed ID: 8439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of Ca++-stimulated respiration by uncouplers.
    Dargel R; Leikin JN
    Acta Biol Med Ger; 1975; 34(11-12):1713-21. PubMed ID: 9761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli.
    Berger EA
    Proc Natl Acad Sci U S A; 1973 May; 70(5):1514-8. PubMed ID: 4268097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy coupling in the active transport of proline and glutamate by the photosynthetic halophile Ectothiorhodospira halophila.
    Rinehart CA; Hubbard JS
    J Bacteriol; 1976 Sep; 127(3):1255-64. PubMed ID: 956126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facilitated transport of calcium by cells and subcellular membranes of Bacillus subtilis and Escherichia coli.
    Silver S; Toth K; Scribner H
    J Bacteriol; 1975 Jun; 122(3):880-5. PubMed ID: 807559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Respiration dependent transport of proline by electron transport particles from mycobacterium phlei.
    Hirata H; Asano A; Brodie AF
    Biochem Biophys Res Commun; 1971 Jul; 44(2):368-74. PubMed ID: 4334137
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.