These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 23895255)
1. On modelling large deformations of heterogeneous biological tissues using a mixed finite element formulation. Wu T; Hung AP; Hunter P; Mithraratne K Comput Methods Biomech Biomed Engin; 2015; 18(5):477-84. PubMed ID: 23895255 [TBL] [Abstract][Full Text] [Related]
2. A robust anisotropic hyperelastic formulation for the modelling of soft tissue. Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546 [TBL] [Abstract][Full Text] [Related]
3. Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation. Oddes Z; Solav D J Mech Behav Biomed Mater; 2023 Apr; 140():105708. PubMed ID: 36801779 [TBL] [Abstract][Full Text] [Related]
4. A quasi-incompressible and quasi-inextensible finite element analysis of fibrous soft biological tissues. Gültekin O; Rodoplu B; Dal H Biomech Model Mechanobiol; 2020 Dec; 19(6):2357-2373. PubMed ID: 32556738 [TBL] [Abstract][Full Text] [Related]
5. An elastomeric material for facial prostheses: synthesis, experimental and numerical testing aspects. Bellamy K; Limbert G; Waters MG; Middleton J Biomaterials; 2003 Dec; 24(27):5061-6. PubMed ID: 14559020 [TBL] [Abstract][Full Text] [Related]
6. Modelling and simulation of porcine liver tissue indentation using finite element method and uniaxial stress-strain data. Fu YB; Chui CK J Biomech; 2014 Jul; 47(10):2430-5. PubMed ID: 24811044 [TBL] [Abstract][Full Text] [Related]
7. A transversely isotropic hyperelastic constitutive model of the PDL. Analytical and computational aspects. Limbert G; Middleton J; Laizans J; Dobelis M; Knets I Comput Methods Biomech Biomed Engin; 2003; 6(5-6):337-45. PubMed ID: 14675954 [TBL] [Abstract][Full Text] [Related]
8. Numerical implementation of an osmo-poro-visco-hyperelastic finite element solver: application to the intervertebral disc. Castro APG; Alves JL Comput Methods Biomech Biomed Engin; 2021 Apr; 24(5):538-550. PubMed ID: 33111576 [TBL] [Abstract][Full Text] [Related]
9. How to implement user-defined fiber-reinforced hyperelastic materials in finite element software. Fehervary H; Maes L; Vastmans J; Kloosterman G; Famaey N J Mech Behav Biomed Mater; 2020 Oct; 110():103737. PubMed ID: 32771879 [TBL] [Abstract][Full Text] [Related]
10. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament. Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853 [TBL] [Abstract][Full Text] [Related]
11. Parameter optimization for the visco-hyperelastic constitutive model of tendon using FEM. Tang CY; Ng GY; Wang ZW; Tsui CP; Zhang G Biomed Mater Eng; 2011; 21(1):9-24. PubMed ID: 21537060 [TBL] [Abstract][Full Text] [Related]
12. A phase-field model for fracture in biological tissues. Raina A; Miehe C Biomech Model Mechanobiol; 2016 Jun; 15(3):479-96. PubMed ID: 26165516 [TBL] [Abstract][Full Text] [Related]
13. Isotropic incompressible hyperelastic models for modelling the mechanical behaviour of biological tissues: a review. Wex C; Arndt S; Stoll A; Bruns C; Kupriyanova Y Biomed Tech (Berl); 2015 Dec; 60(6):577-92. PubMed ID: 26087063 [TBL] [Abstract][Full Text] [Related]
14. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes. Einstein DR; Reinhall P; Nicosia M; Cochran RP; Kunzelman K Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):33-44. PubMed ID: 12623436 [TBL] [Abstract][Full Text] [Related]
15. A mixed finite element formulation for a non-linear, transversely isotropic material model for the cardiac tissue. Thorvaldsen T; Osnes H; Sundnes J Comput Methods Biomech Biomed Engin; 2005 Dec; 8(6):369-79. PubMed ID: 16393874 [TBL] [Abstract][Full Text] [Related]
16. Equivalence between short-time biphasic and incompressible elastic material responses. Ateshian GA; Ellis BJ; Weiss JA J Biomech Eng; 2007 Jun; 129(3):405-12. PubMed ID: 17536908 [TBL] [Abstract][Full Text] [Related]
17. A nonlinear dynamic finite element approach for simulating muscular hydrostats. Vavourakis V; Kazakidi A; Tsakiris DP; Ekaterinaris JA Comput Methods Biomech Biomed Engin; 2014; 17(8):917-31. PubMed ID: 23025686 [TBL] [Abstract][Full Text] [Related]
18. A hyperelastic and almost incompressible material model as an approach to intervertebral disc analysis. Natali AN J Biomed Eng; 1991 Mar; 13(2):163-8. PubMed ID: 2033952 [TBL] [Abstract][Full Text] [Related]
19. Constitutive model for brain tissue under finite compression. Laksari K; Shafieian M; Darvish K J Biomech; 2012 Feb; 45(4):642-6. PubMed ID: 22281404 [TBL] [Abstract][Full Text] [Related]
20. Identification of constitutive materials of bi-layer soft tissues from multimodal indentations. Fougeron N; Oddes Z; Ashkenazi A; Solav D J Mech Behav Biomed Mater; 2024 Jul; 155():106572. PubMed ID: 38754153 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]