BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 23895279)

  • 1. A novel form of bacterial resistance to the action of eukaryotic host defense peptides, the use of a lipid receptor.
    Dennison SR; Harris F; Mura M; Morton LH; Zvelindovsky A; Phoenix DA
    Biochemistry; 2013 Sep; 52(35):6021-9. PubMed ID: 23895279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5.
    Dennison SR; Mura M; Harris F; Morton LH; Zvelindovsky A; Phoenix DA
    Biochim Biophys Acta; 2015 May; 1848(5):1111-8. PubMed ID: 25640709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The plasticins: membrane adsorption, lipid disorders, and biological activity.
    El Amri C; Lacombe C; Zimmerman K; Ladram A; Amiche M; Nicolas P; Bruston F
    Biochemistry; 2006 Dec; 45(48):14285-97. PubMed ID: 17128968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigations into the potential anticancer activity of Maximin H5.
    Dennison SR; Harris F; Phoenix DA
    Biochimie; 2017 Jun; 137():29-34. PubMed ID: 28249727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane association, electrostatic sequestration, and cytotoxicity of Gly-Leu-rich peptide orthologs with differing functions.
    Vanhoye D; Bruston F; El Amri S; Ladram A; Amiche M; Nicolas P
    Biochemistry; 2004 Jul; 43(26):8391-409. PubMed ID: 15222751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain.
    Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M
    Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes.
    Wieprecht T; Dathe M; Beyermann M; Krause E; Maloy WL; MacDonald DL; Bienert M
    Biochemistry; 1997 May; 36(20):6124-32. PubMed ID: 9166783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative mode of action of novel hybrid peptide CS-1a and its rearranged amphipathic analogue CS-2a.
    Joshi S; Bisht GS; Rawat DS; Maiti S; Pasha S
    FEBS J; 2012 Oct; 279(20):3776-90. PubMed ID: 22883393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Pro --> peptoid residue substitution on cell selectivity and mechanism of antibacterial action of tritrpticin-amide antimicrobial peptide.
    Zhu WL; Lan H; Park Y; Yang ST; Kim JI; Park IS; You HJ; Lee JS; Park YS; Kim Y; Hahm KS; Shin SY
    Biochemistry; 2006 Oct; 45(43):13007-17. PubMed ID: 17059217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes.
    Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M
    Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformation and lipid binding properties of four peptides derived from the membrane-binding domain of CTP:phosphocholine cytidylyltransferase.
    Johnson JE; Rao NM; Hui SW; Cornell RB
    Biochemistry; 1998 Jun; 37(26):9509-19. PubMed ID: 9649334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction and lipid-induced conformation of two cecropin-melittin hybrid peptides depend on peptide and membrane composition.
    Abrunhosa F; Faria S; Gomes P; Tomaz I; Pessoa JC; Andreu D; Bastos M
    J Phys Chem B; 2005 Sep; 109(36):17311-9. PubMed ID: 16853210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimicrobial activity of aurein 2.5 against yeasts.
    Dennison SR; Harris F; Morton LH; Phoenix DA
    FEMS Microbiol Lett; 2013 Sep; 346(2):140-5. PubMed ID: 23841919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane activity of tetra-p-guanidinoethylcalix[4]arene as a possible reason for its antibacterial properties.
    Sautrey G; Orlof M; Korchowiec B; de Vains JB; Rogalska E
    J Phys Chem B; 2011 Dec; 115(50):15002-12. PubMed ID: 22081973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of an antimicrobial peptide with a model lipid bilayer using molecular dynamics simulation.
    Soliman W; Bhattacharjee S; Kaur K
    Langmuir; 2009 Jun; 25(12):6591-5. PubMed ID: 19505152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of the interactions of kinin peptides with an anionic POPG bilayer.
    Manna M; Mukhopadhyay C
    Langmuir; 2011 Apr; 27(7):3713-22. PubMed ID: 21355573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designed low amphipathic peptides with alpha-helical propensity exhibiting antimicrobial activity via a lipid domain formation mechanism.
    Yamamoto N; Tamura A
    Peptides; 2010 May; 31(5):794-805. PubMed ID: 20109510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interaction of cell-penetrating peptides with lipid model systems and subsequent lipid reorganization: thermodynamic and structural characterization.
    Alves ID; Correia I; Jiao CY; Sachon E; Sagan S; Lavielle S; Tollin G; Chassaing G
    J Pept Sci; 2009 Mar; 15(3):200-9. PubMed ID: 18985709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and synthesis of amphiphilic alpha-helical model peptides with systematically varied hydrophobic-hydrophilic balance and their interaction with lipid- and bio-membranes.
    Kiyota T; Lee S; Sugihara G
    Biochemistry; 1996 Oct; 35(40):13196-204. PubMed ID: 8855958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.