BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 23895656)

  • 1. Combining genomic and proteomic approaches for epigenetics research.
    Han Y; Garcia BA
    Epigenomics; 2013 Aug; 5(4):439-52. PubMed ID: 23895656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Native Chromatin Proteomics (N-ChroP) to Characterize Histone Post-translational Modification (PTM) Combinatorics at Distinct Genomic Regions.
    Nicosia L; Bonaldi T
    Methods Mol Biol; 2021; 2351():251-274. PubMed ID: 34382194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical systems approaches for the analysis of histone modification readout.
    Soldi M; Bremang M; Bonaldi T
    Biochim Biophys Acta; 2014 Aug; 1839(8):657-68. PubMed ID: 24681439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomics in chromatin biology and epigenetics: Elucidation of post-translational modifications of histone proteins by mass spectrometry.
    Sidoli S; Cheng L; Jensen ON
    J Proteomics; 2012 Jun; 75(12):3419-33. PubMed ID: 22234360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing crosstalk in epigenetic signaling to understand disease physiology.
    Lempiäinen JK; Garcia BA
    Biochem J; 2023 Jan; 480(1):57-85. PubMed ID: 36630129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The contribution of mass spectrometry-based proteomics to understanding epigenetics.
    Noberini R; Sigismondo G; Bonaldi T
    Epigenomics; 2016 Mar; 8(3):429-45. PubMed ID: 26606673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional proteomics in histone research and epigenetics.
    Trelle MB; Jensen ON
    Expert Rev Proteomics; 2007 Aug; 4(4):491-503. PubMed ID: 17705707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modern approaches for investigating epigenetic signaling pathways.
    Evertts AG; Zee BM; Garcia BA
    J Appl Physiol (1985); 2010 Sep; 109(3):927-33. PubMed ID: 20110548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges ahead for mass spectrometry and proteomics applications in epigenetics.
    Kessler BM
    Epigenomics; 2010 Feb; 2(1):163-7. PubMed ID: 22122752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding the protein composition of whole nucleosomes with Nuc-MS.
    Schachner LF; Jooß K; Morgan MA; Piunti A; Meiners MJ; Kafader JO; Lee AS; Iwanaszko M; Cheek MA; Burg JM; Howard SA; Keogh MC; Shilatifard A; Kelleher NL
    Nat Methods; 2021 Mar; 18(3):303-308. PubMed ID: 33589837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Expanding Constellation of Histone Post-Translational Modifications in the Epigenetic Landscape.
    Cavalieri V
    Genes (Basel); 2021 Oct; 12(10):. PubMed ID: 34680990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering chromatin states: chemical and synthetic biology approaches to investigate histone modification function.
    Pick H; Kilic S; Fierz B
    Biochim Biophys Acta; 2014 Aug; 1839(8):644-56. PubMed ID: 24768924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histone Post-Translational Modifications and Nucleosome Organisation in Transcriptional Regulation: Some Open Questions.
    Castillo J; López-Rodas G; Franco L
    Adv Exp Med Biol; 2017; 966():65-92. PubMed ID: 28639249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combinations of histone post-translational modifications.
    Taylor BC; Young NL
    Biochem J; 2021 Feb; 478(3):511-532. PubMed ID: 33567070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteogenomic characterization and mapping of nucleosomes decoded by Brd and HP1 proteins.
    LeRoy G; Chepelev I; DiMaggio PA; Blanco MA; Zee BM; Zhao K; Garcia BA
    Genome Biol; 2012 Aug; 13(8):R68. PubMed ID: 22897906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone proteomics and the epigenetic regulation of nucleosome mobility.
    Cosgrove MS
    Expert Rev Proteomics; 2007 Aug; 4(4):465-78. PubMed ID: 17705705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Epigenetic Modifications During Vegetative and Reproductive Development in Cereals Using Chromatin Immunoprecipitation (ChIP).
    Begcy K; Dresselhaus T
    Methods Mol Biol; 2020; 2072():141-156. PubMed ID: 31541444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the probability of H3K4me3 occupation at a base pair from the genome sequence context.
    Ha M; Hong S; Li WH
    Bioinformatics; 2013 May; 29(9):1199-205. PubMed ID: 23511541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SILAC-based proteomic analysis to dissect the "histone modification signature" of human breast cancer cells.
    Cuomo A; Moretti S; Minucci S; Bonaldi T
    Amino Acids; 2011 Jul; 41(2):387-99. PubMed ID: 20617350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing nucleosome dynamics from genomic and epigenetic information using rule induction learning.
    Le NT; Ho TB; Tran DH
    BMC Genomics; 2009 Dec; 10 Suppl 3(Suppl 3):S27. PubMed ID: 19958491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.