BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 23895680)

  • 21. Betanin, isolated from fruits of Opuntia elatior Mill attenuates renal fibrosis in diabetic rats through regulating oxidative stress and TGF-β pathway.
    Sutariya B; Saraf M
    J Ethnopharmacol; 2017 Feb; 198():432-443. PubMed ID: 28111218
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cellular basis of diabetic nephropathy: II. The transforming growth factor-beta system and diabetic nephropathy lesions in type 1 diabetes.
    Huang C; Kim Y; Caramori ML; Fish AJ; Rich SS; Miller ME; Russell GB; Mauer M
    Diabetes; 2002 Dec; 51(12):3577-81. PubMed ID: 12453917
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diabetic nephropathy -- a multifaceted target of new therapies.
    Choudhury D; Tuncel M; Levi M
    Discov Med; 2010 Nov; 10(54):406-15. PubMed ID: 21122472
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Podocyte Autophagy: A Potential Therapeutic Target to Prevent the Progression of Diabetic Nephropathy.
    Liu N; Xu L; Shi Y; Zhuang S
    J Diabetes Res; 2017; 2017():3560238. PubMed ID: 28512641
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rethinking glomerular basement membrane thickening in diabetic nephropathy: adaptive or pathogenic?
    Marshall CB
    Am J Physiol Renal Physiol; 2016 Nov; 311(5):F831-F843. PubMed ID: 27582102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diabetic retinopathy may predict the renal outcomes of patients with diabetic nephropathy.
    Zhang J; Wang Y; Li L; Zhang R; Guo R; Li H; Han Q; Teng G; Liu F
    Ren Fail; 2018 Nov; 40(1):243-251. PubMed ID: 29633887
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of VEGF-A and LRG1 in Abnormal Angiogenesis Associated With Diabetic Nephropathy.
    Zhang A; Fang H; Chen J; He L; Chen Y
    Front Physiol; 2020; 11():1064. PubMed ID: 32982792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Signaling pathways in diabetic nephropathy.
    Kawanami D; Matoba K; Utsunomiya K
    Histol Histopathol; 2016 Oct; 31(10):1059-67. PubMed ID: 27094540
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combination of telmisartan with sildenafil ameliorate progression of diabetic nephropathy in streptozotocin-induced diabetic model.
    El-Mahdy NA; El-Sayad ME; El-Kadem AH
    Biomed Pharmacother; 2016 Jul; 81():136-144. PubMed ID: 27261587
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diabetic kidney lesions of GIPRdn transgenic mice: podocyte hypertrophy and thickening of the GBM precede glomerular hypertrophy and glomerulosclerosis.
    Herbach N; Schairer I; Blutke A; Kautz S; Siebert A; Göke B; Wolf E; Wanke R
    Am J Physiol Renal Physiol; 2009 Apr; 296(4):F819-29. PubMed ID: 19211686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MicroRNA: A new generation therapeutic target in diabetic nephropathy.
    Dewanjee S; Bhattacharjee N
    Biochem Pharmacol; 2018 Sep; 155():32-47. PubMed ID: 29940170
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transforming growth factor-β and Smads.
    Lan HY; Chung ACK
    Contrib Nephrol; 2011; 170():75-82. PubMed ID: 21659760
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction.
    Qi W; Keenan HA; Li Q; Ishikado A; Kannt A; Sadowski T; Yorek MA; Wu IH; Lockhart S; Coppey LJ; Pfenninger A; Liew CW; Qiang G; Burkart AM; Hastings S; Pober D; Cahill C; Niewczas MA; Israelsen WJ; Tinsley L; Stillman IE; Amenta PS; Feener EP; Vander Heiden MG; Stanton RC; King GL
    Nat Med; 2017 Jun; 23(6):753-762. PubMed ID: 28436957
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The analysis of risk factors for diabetic nephropathy progression and the construction of a prognostic database for chronic kidney diseases.
    Wang G; Ouyang J; Li S; Wang H; Lian B; Liu Z; Xie L
    J Transl Med; 2019 Aug; 17(1):264. PubMed ID: 31409386
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protection of CTGF Antibody Against Diabetic Nephropathy in Mice Via Reducing Glomerular β-Catenin Expression and Podocyte Epithelial-Mesenchymal Transition.
    Dai HY; Ma LN; Cao Y; Chen XL; Shi H; Fan YP; Yang B
    J Cell Biochem; 2017 Nov; 118(11):3706-3712. PubMed ID: 28370212
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interleukin-22 ameliorated renal injury and fibrosis in diabetic nephropathy through inhibition of NLRP3 inflammasome activation.
    Wang S; Li Y; Fan J; Zhang X; Luan J; Bian Q; Ding T; Wang Y; Wang Z; Song P; Cui D; Mei X; Ju D
    Cell Death Dis; 2017 Jul; 8(7):e2937. PubMed ID: 28726774
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The roles of sodium-glucose cotransporter 2 inhibitors in preventing kidney injury in diabetes.
    Jaikumkao K; Pongchaidecha A; Chatsudthipong V; Chattipakorn SC; Chattipakorn N; Lungkaphin A
    Biomed Pharmacother; 2017 Oct; 94():176-187. PubMed ID: 28759755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. miR-133b and miR-199b knockdown attenuate TGF-β1-induced epithelial to mesenchymal transition and renal fibrosis by targeting SIRT1 in diabetic nephropathy.
    Sun Z; Ma Y; Chen F; Wang S; Chen B; Shi J
    Eur J Pharmacol; 2018 Oct; 837():96-104. PubMed ID: 30125566
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Knockdown of Angiopoietin-Like Protein 2 Ameliorates Diabetic Nephropathy by Inhibiting TLR4.
    Yang S; Zhang J; Wang S; Shi J; Zhao X
    Cell Physiol Biochem; 2017; 43(2):685-696. PubMed ID: 28946139
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preservation of renal function in chronic diabetes by enhancing glomerular glucose metabolism.
    Qi W; Li Q; Gordin D; King GL
    J Mol Med (Berl); 2018 May; 96(5):373-381. PubMed ID: 29574544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.