These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 23895680)

  • 41. Diabetes mellitus as a cause or comorbidity of chronic kidney disease and its outcomes: the Gonryo study.
    Iwai T; Miyazaki M; Yamada G; Nakayama M; Yamamoto T; Satoh M; Sato H; Ito S
    Clin Exp Nephrol; 2018 Apr; 22(2):328-336. PubMed ID: 28752289
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dencichine ameliorates kidney injury in induced type II diabetic nephropathy via the TGF-β/Smad signalling pathway.
    Jie L; Pengcheng Q; Qiaoyan H; Linlin B; Meng Z; Fang W; Min J; Li Y; Ya Z; Qian Y; Siwang W
    Eur J Pharmacol; 2017 Oct; 812():196-205. PubMed ID: 28633927
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Application of an adenoviral vector encoding soluble transforming growth factor-beta type II receptor to the treatment of diabetic nephropathy in mice.
    Kondo T; Takemura G; Kosai K; Ohno T; Takahashi T; Esaki M; Goto K; Maruyama R; Murata I; Minatoguchi S; Fujiwara T; Fujiwara H
    Clin Exp Pharmacol Physiol; 2008 Nov; 35(11):1288-93. PubMed ID: 18505441
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Incidence of renal replacement therapy for diabetic nephropathy in the Netherlands: Dutch diabetes estimates (DUDE)-3.
    van Dijk PR; Kramer A; Logtenberg SJ; Hoitsma AJ; Kleefstra N; Jager KJ; Bilo HJ
    BMJ Open; 2015 Jan; 5(1):e005624. PubMed ID: 25636789
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Huangkui capsule attenuates renal fibrosis in diabetic nephropathy rats through regulating oxidative stress and p38MAPK/Akt pathways, compared to α-lipoic acid.
    Mao ZM; Shen SM; Wan YG; Sun W; Chen HL; Huang MM; Yang JJ; Wu W; Tang HT; Tang RM
    J Ethnopharmacol; 2015 Sep; 173():256-65. PubMed ID: 26226437
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Early detection and treatment of diabetic nephropathy.
    Woredekal Y
    Pediatr Endocrinol Rev; 2008 Aug; 5 Suppl 4():999-1004. PubMed ID: 18806717
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Glomerular expression of platelet-derived growth factor (PDGF)-A, -B chain and PDGF receptor-alpha, -beta in human diabetic nephropathy.
    Uehara G; Suzuki D; Toyoda M; Umezono T; Sakai H
    Clin Exp Nephrol; 2004 Mar; 8(1):36-42. PubMed ID: 15067514
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Non-genetic mechanisms of diabetic nephropathy.
    Han Q; Zhu H; Chen X; Liu Z
    Front Med; 2017 Sep; 11(3):319-332. PubMed ID: 28871454
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Resveratrol ameliorates early diabetic nephropathy associated with suppression of augmented TGF-β/smad and ERK1/2 signaling in streptozotocin-induced diabetic rats.
    Chen KH; Hung CC; Hsu HH; Jing YH; Yang CW; Chen JK
    Chem Biol Interact; 2011 Mar; 190(1):45-53. PubMed ID: 21300041
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Role of Endoplasmic Reticulum Stress in Diabetic Nephropathy.
    Fan Y; Lee K; Wang N; He JC
    Curr Diab Rep; 2017 Mar; 17(3):17. PubMed ID: 28271468
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Review of Herbal Traditional Chinese Medicine for the Treatment of Diabetic Nephropathy.
    Sun GD; Li CY; Cui WP; Guo QY; Dong CQ; Zou HB; Liu SJ; Dong WP; Miao LN
    J Diabetes Res; 2016; 2016():5749857. PubMed ID: 26649322
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mitochondria: A Novel Therapeutic Target in Diabetic Nephropathy.
    Yang S; Han Y; Liu J; Song P; Xu X; Zhao L; Hu C; Xiao L; Liu F; Zhang H; Sun L
    Curr Med Chem; 2017; 24(29):3185-3202. PubMed ID: 28486920
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Islet transplantation promotes podocyte regeneration in a model of diabetic nephropathy.
    Xu Z; Fan J
    Turk J Med Sci; 2017 Dec; 47(6):1925-1930. PubMed ID: 29307170
    [TBL] [Abstract][Full Text] [Related]  

  • 54. IL-17 and CD40 ligand synergistically stimulate the chronicity of diabetic nephropathy.
    Kuo HL; Huang CC; Lin TY; Lin CY
    Nephrol Dial Transplant; 2018 Feb; 33(2):248-256. PubMed ID: 28339909
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tubular overexpression of Gremlin in transgenic mice aggravates renal damage in diabetic nephropathy.
    Marchant V; Droguett A; Valderrama G; Burgos ME; Carpio D; Kerr B; Ruiz-Ortega M; Egido J; Mezzano S
    Am J Physiol Renal Physiol; 2015 Sep; 309(6):F559-68. PubMed ID: 26155842
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Study of diabetic nephropathy in the proteomic era.
    Thongboonkerd V
    Contrib Nephrol; 2011; 170():172-183. PubMed ID: 21659770
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of inflammation in diabetic nephropathy.
    Fornoni A; Ijaz A; Tejada T; Lenz O
    Curr Diabetes Rev; 2008 Feb; 4(1):10-7. PubMed ID: 18220690
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cellular phenotypic transitions in diabetic nephropathy: An update.
    Cao Y; Lin JH; Hammes HP; Zhang C
    Front Pharmacol; 2022; 13():1038073. PubMed ID: 36408221
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Involvement of Histone Lysine Methylation in p21 Gene Expression in Rat Kidney In Vivo and Rat Mesangial Cells In Vitro under Diabetic Conditions.
    Li X; Li C; Li X; Cui P; Li Q; Guo Q; Han H; Liu S; Sun G
    J Diabetes Res; 2016; 2016():3853242. PubMed ID: 27652271
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Wnt Signaling Pathway in Diabetic Nephropathy.
    Wang H; Zhang R; Wu X; Chen Y; Ji W; Wang J; Zhang Y; Xia Y; Tang Y; Yuan J
    Front Cell Dev Biol; 2021; 9():701547. PubMed ID: 35059392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.