These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23895738)

  • 21. Prediction of toxicity of phenols and anilines to algae by quantitative structure-activity relationship.
    Lu GH; Wang C; Guo XL
    Biomed Environ Sci; 2008 Jun; 21(3):193-6. PubMed ID: 18714815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predictive modeling of chemical toxicity towards Pseudokirchneriella subcapitata using regression and classification based approaches.
    Pramanik S; Roy K
    Ecotoxicol Environ Saf; 2014 Mar; 101():184-90. PubMed ID: 24507144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology.
    Singh KP; Gupta S; Kumar A; Mohan D
    Chem Res Toxicol; 2014 May; 27(5):741-53. PubMed ID: 24738471
    [TBL] [Abstract][Full Text] [Related]  

  • 24. QSAR modeling of algal low level toxicity values of different phenol and aniline derivatives using 2D descriptors.
    Seth A; Roy K
    Aquat Toxicol; 2020 Nov; 228():105627. PubMed ID: 32956953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An in silico algal toxicity model with a wide applicability potential for industrial chemicals and pharmaceuticals.
    Önlü S; Saçan MT
    Environ Toxicol Chem; 2017 Apr; 36(4):1012-1019. PubMed ID: 27617782
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Toxicity and quantitative structure-activity relationships of nitriles based on Pseudokirchneriella subcapitata.
    Huang CP; Wang YJ; Chen CY
    Ecotoxicol Environ Saf; 2007 Jul; 67(3):439-46. PubMed ID: 16875732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative structure-toxicity relationships of organic chemicals against Pseudokirchneriella subcapitata.
    Yu X
    Aquat Toxicol; 2020 Jul; 224():105496. PubMed ID: 32408003
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toxicity of organic pollutants to seven aquatic organisms: effect of polarity and ionization.
    Qin WC; Su LM; Zhang XJ; Qin HW; Wen Y; Guo Z; Sun FT; Sheng LX; Zhao YH; Abraham MH
    SAR QSAR Environ Res; 2010 Jul; 21(5-6):389-401. PubMed ID: 20818578
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modification of polychlorinated phenols and evaluation of their toxicity, biodegradation and bioconcentration using three-dimensional quantitative structure-activity relationship models.
    Tong L; Guo L; Lv X; Li Y
    J Mol Graph Model; 2017 Jan; 71():1-12. PubMed ID: 27825025
    [TBL] [Abstract][Full Text] [Related]  

  • 30. QSAR analysis of soil sorption coefficients for polar organic chemicals: substituted anilines and phenols.
    Liu G; Yu J
    Water Res; 2005 May; 39(10):2048-55. PubMed ID: 15913706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the aquatic toxicity of substituted phenols to Chlorella vulgaris: QSTR with an extended novel data set and interspecies models.
    Tugcu G; Ertürk MD; Saçan MT
    J Hazard Mater; 2017 Oct; 339():122-130. PubMed ID: 28641232
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Simple Approach to the Toxicity Prediction of Anilines and Phenols Towards Aquatic Organisms.
    Muhire J; Li BQ; Zhai HL; Li SS; Mi JY
    Arch Environ Contam Toxicol; 2020 May; 78(4):545-554. PubMed ID: 31915850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a chronic fish toxicity model for predicting sub-lethal NOEC values for non-polar narcotics.
    Austin TJ; Eadsforth CV
    SAR QSAR Environ Res; 2014; 25(2):147-60. PubMed ID: 24635482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimating low-toxic-effect concentrations in closed-system algal toxicity tests.
    Chen CY; Wang YJ; Yang CF
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1514-22. PubMed ID: 19342099
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ecotoxicological QSAR modelling of organic chemicals against
    Khan K; Roy K
    SAR QSAR Environ Res; 2019 Sep; 30(9):665-681. PubMed ID: 31474156
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of different polychlorinated biphenyls on two aquatic models, the green alga Pseudokirchneriella subcapitata and the haemocytes from the European abalone Haliotis tuberculata.
    Halm-Lemeille MP; Abbaszadeh Fard E; Latire T; Ferard JF; Costil K; Lebel JM; Bureau R; Serpentini A
    Chemosphere; 2014 Sep; 110():120-8. PubMed ID: 24630249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Technical basis for polar and nonpolar narcotic chemicals and polycyclic aromatic hydrocarbon criteria. III. A polyparameter model for target lipid partitioning.
    Kipka U; Di Toro DM
    Environ Toxicol Chem; 2009 Jul; 28(7):1429-38. PubMed ID: 19245270
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Qsar investigation of a large data set for fish, algae and Daphnia toxicity.
    Lessigiarska I; Wortha AP; Sokull-Klüttgen B; Jeram S; Dearden JC; Netzeva TI; Cronin MT
    SAR QSAR Environ Res; 2004; 15(5-6):413-31. PubMed ID: 15669699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. General baseline toxicity QSAR for nonpolar, polar and ionisable chemicals and their mixtures in the bioluminescence inhibition assay with Aliivibrio fischeri.
    Escher BI; Baumer A; Bittermann K; Henneberger L; König M; Kühnert C; Klüver N
    Environ Sci Process Impacts; 2017 Mar; 19(3):414-428. PubMed ID: 28197603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. General toxicity prediction approach for mixtures containing polar narcotic chemicals.
    Lin Z; Wu C; Shi P; Wang L; Gao S
    Bull Environ Contam Toxicol; 2003 Aug; 71(2):345-53. PubMed ID: 14560387
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.