These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 23896178)
1. Mixing of an anthracene-contaminated soil: a simple but efficient remediation technique? Delgado-Balbuena L; Aguilar-Chávez ÁR; Luna-Guido ML; Dendooven L Ecotoxicol Environ Saf; 2013 Oct; 96():238-41. PubMed ID: 23896178 [TBL] [Abstract][Full Text] [Related]
2. Changes in the Bacterial Community Structure of Remediated Anthracene-Contaminated Soils. Delgado-Balbuena L; Bello-López JM; Navarro-Noya YE; Rodríguez-Valentín A; Luna-Guido ML; Dendooven L PLoS One; 2016; 11(10):e0160991. PubMed ID: 27727277 [TBL] [Abstract][Full Text] [Related]
3. Eisenia fetida increased removal of polycyclic aromatic hydrocarbons from soil. Contreras-Ramos SM; Alvarez-Bernal D; Dendooven L Environ Pollut; 2006 Jun; 141(3):396-401. PubMed ID: 16263200 [TBL] [Abstract][Full Text] [Related]
4. Dynamics of carbon and nitrogen in a mixture of polycyclic aromatic hydrocarbons contaminated soil amended with organic residues. Rivera-Espinoza Y; Dendooven L Environ Technol; 2007 Aug; 28(8):883-93. PubMed ID: 17879847 [TBL] [Abstract][Full Text] [Related]
5. Removal of Two High Molecular Weight PAHs from Soils with Different Water Content. Corona L; Dendooven L; Chicken A; Hernández O; Iturbe R Bull Environ Contam Toxicol; 2017 Nov; 99(5):619-624. PubMed ID: 28887580 [TBL] [Abstract][Full Text] [Related]
6. Influence of rhamnolipid biosurfactant and Brij-35 synthetic surfactant on Wolf DC; Gan J Environ Pollut; 2018 Dec; 243(Pt B):1846-1853. PubMed ID: 30408872 [TBL] [Abstract][Full Text] [Related]
7. Remediation of PAHs in a saline-alkaline soil amended with wastewater sludge and the effect on dynamics of C and N. Fernández-Luqueño F; Marsch R; Espinosa-Victoria D; Thalasso F; Hidalgo Lara ME; Munive A; Luna-Guido ML; Dendooven L Sci Total Environ; 2008 Aug; 402(1):18-28. PubMed ID: 18538824 [TBL] [Abstract][Full Text] [Related]
8. Effects of surfactants on the fractionation, vermiaccumulation, and removal of fluoranthene by earthworms in soil. Shi Z; Wang C; Zhao Y Chemosphere; 2020 Jul; 250():126332. PubMed ID: 32234626 [TBL] [Abstract][Full Text] [Related]
9. Earthworms (Eisenia fetida) demonstrate potential for use in soil bioremediation by increasing the degradation rates of heavy crude oil hydrocarbons. Martinkosky L; Barkley J; Sabadell G; Gough H; Davidson S Sci Total Environ; 2017 Feb; 580():734-743. PubMed ID: 27979622 [TBL] [Abstract][Full Text] [Related]
10. Bioremediation of polycyclic aromatic hydrocarbon-contaminated saline-alkaline soils of the former Lake Texcoco. Betancur-Galvis LA; Alvarez-Bernal D; Ramos-Valdivia AC; Dendooven L Chemosphere; 2006 Mar; 62(11):1749-60. PubMed ID: 16154615 [TBL] [Abstract][Full Text] [Related]
11. Comparing anthracene and fluorene degradation in anthracene and fluorene-contaminated soil by single and mixed plant cultivation. Somtrakoon K; Chouychai W; Lee H Int J Phytoremediation; 2014; 16(4):415-28. PubMed ID: 24912240 [TBL] [Abstract][Full Text] [Related]
12. Using earthworms to test the efficiency of remediation of oil-polluted soil in tropical Mexico. Geissen V; Gomez-Rivera P; Lwanga EH; Mendoza RB; Narcías AT; Marcías EB Ecotoxicol Environ Saf; 2008 Nov; 71(3):638-42. PubMed ID: 18455235 [TBL] [Abstract][Full Text] [Related]
13. Phytoremediation efficacy assessment of polycyclic aromatic hydrocarbons contaminated soils using garden pea (Pisum sativum) and earthworms (Eisenia fetida). Sivaram AK; Logeshwaran P; Lockington R; Naidu R; Megharaj M Chemosphere; 2019 Aug; 229():227-235. PubMed ID: 31078879 [TBL] [Abstract][Full Text] [Related]
14. Effectiveness of the Zea mays-Streptomyces association for the phytoremediation of petroleum hydrocarbons impacted soils. Baoune H; Aparicio JD; Acuña A; El Hadj-Khelil AO; Sanchez L; Polti MA; Alvarez A Ecotoxicol Environ Saf; 2019 Nov; 184():109591. PubMed ID: 31514081 [TBL] [Abstract][Full Text] [Related]
15. Supercritical fluid extraction of persistent organic pollutants from natural and artificial soils and comparison with bioaccumulation in earthworms. Bielská L; Šmídová K; Hofman J Environ Pollut; 2013 May; 176():48-54. PubMed ID: 23416268 [TBL] [Abstract][Full Text] [Related]
16. Effect of a nonionic surfactant on biodegradation of slowly desorbing PAHs in contaminated soils. Bueno-Montes M; Springael D; Ortega-Calvo JJ Environ Sci Technol; 2011 Apr; 45(7):3019-26. PubMed ID: 21375290 [TBL] [Abstract][Full Text] [Related]
17. Changes in the contents of selected polycyclic aromatic hydrocarbons in soils of various types. Banach-Szott M; Debska B; Wisniewska A; Pakula J Environ Sci Pollut Res Int; 2015 Apr; 22(7):5059-69. PubMed ID: 25586610 [TBL] [Abstract][Full Text] [Related]
18. Effects of corn straw on dissipation of polycyclic aromatic hydrocarbons and potential application of backpropagation artificial neural network prediction model for PAHs bioremediation. Bao H; Wang J; Li J; Zhang H; Wu F Ecotoxicol Environ Saf; 2019 Dec; 186():109745. PubMed ID: 31606644 [TBL] [Abstract][Full Text] [Related]
19. Two-liquid-phase system: A promising technique for predicting bioavailability of polycyclic aromatic hydrocarbons in long-term contaminated soils. Wang C; Wang Z; Li Z; Ahmad R Chemosphere; 2017 Feb; 169():685-692. PubMed ID: 27914353 [TBL] [Abstract][Full Text] [Related]
20. [Advances in studies on the effect of surfactant on bioavailability of polycylcic aromatic hydrocarbons (PAHs) in soil]. Jiang X; Jing X; Gao X; Ou Z Ying Yong Sheng Tai Xue Bao; 2002 Sep; 13(9):1179-86. PubMed ID: 12561188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]