BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 23896178)

  • 1. Mixing of an anthracene-contaminated soil: a simple but efficient remediation technique?
    Delgado-Balbuena L; Aguilar-Chávez ÁR; Luna-Guido ML; Dendooven L
    Ecotoxicol Environ Saf; 2013 Oct; 96():238-41. PubMed ID: 23896178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the Bacterial Community Structure of Remediated Anthracene-Contaminated Soils.
    Delgado-Balbuena L; Bello-López JM; Navarro-Noya YE; Rodríguez-Valentín A; Luna-Guido ML; Dendooven L
    PLoS One; 2016; 11(10):e0160991. PubMed ID: 27727277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eisenia fetida increased removal of polycyclic aromatic hydrocarbons from soil.
    Contreras-Ramos SM; Alvarez-Bernal D; Dendooven L
    Environ Pollut; 2006 Jun; 141(3):396-401. PubMed ID: 16263200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of carbon and nitrogen in a mixture of polycyclic aromatic hydrocarbons contaminated soil amended with organic residues.
    Rivera-Espinoza Y; Dendooven L
    Environ Technol; 2007 Aug; 28(8):883-93. PubMed ID: 17879847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of Two High Molecular Weight PAHs from Soils with Different Water Content.
    Corona L; Dendooven L; Chicken A; Hernández O; Iturbe R
    Bull Environ Contam Toxicol; 2017 Nov; 99(5):619-624. PubMed ID: 28887580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of rhamnolipid biosurfactant and Brij-35 synthetic surfactant on
    Wolf DC; Gan J
    Environ Pollut; 2018 Dec; 243(Pt B):1846-1853. PubMed ID: 30408872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remediation of PAHs in a saline-alkaline soil amended with wastewater sludge and the effect on dynamics of C and N.
    Fernández-Luqueño F; Marsch R; Espinosa-Victoria D; Thalasso F; Hidalgo Lara ME; Munive A; Luna-Guido ML; Dendooven L
    Sci Total Environ; 2008 Aug; 402(1):18-28. PubMed ID: 18538824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of surfactants on the fractionation, vermiaccumulation, and removal of fluoranthene by earthworms in soil.
    Shi Z; Wang C; Zhao Y
    Chemosphere; 2020 Jul; 250():126332. PubMed ID: 32234626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Earthworms (Eisenia fetida) demonstrate potential for use in soil bioremediation by increasing the degradation rates of heavy crude oil hydrocarbons.
    Martinkosky L; Barkley J; Sabadell G; Gough H; Davidson S
    Sci Total Environ; 2017 Feb; 580():734-743. PubMed ID: 27979622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioremediation of polycyclic aromatic hydrocarbon-contaminated saline-alkaline soils of the former Lake Texcoco.
    Betancur-Galvis LA; Alvarez-Bernal D; Ramos-Valdivia AC; Dendooven L
    Chemosphere; 2006 Mar; 62(11):1749-60. PubMed ID: 16154615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing anthracene and fluorene degradation in anthracene and fluorene-contaminated soil by single and mixed plant cultivation.
    Somtrakoon K; Chouychai W; Lee H
    Int J Phytoremediation; 2014; 16(4):415-28. PubMed ID: 24912240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using earthworms to test the efficiency of remediation of oil-polluted soil in tropical Mexico.
    Geissen V; Gomez-Rivera P; Lwanga EH; Mendoza RB; Narcías AT; Marcías EB
    Ecotoxicol Environ Saf; 2008 Nov; 71(3):638-42. PubMed ID: 18455235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation efficacy assessment of polycyclic aromatic hydrocarbons contaminated soils using garden pea (Pisum sativum) and earthworms (Eisenia fetida).
    Sivaram AK; Logeshwaran P; Lockington R; Naidu R; Megharaj M
    Chemosphere; 2019 Aug; 229():227-235. PubMed ID: 31078879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effectiveness of the Zea mays-Streptomyces association for the phytoremediation of petroleum hydrocarbons impacted soils.
    Baoune H; Aparicio JD; Acuña A; El Hadj-Khelil AO; Sanchez L; Polti MA; Alvarez A
    Ecotoxicol Environ Saf; 2019 Nov; 184():109591. PubMed ID: 31514081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supercritical fluid extraction of persistent organic pollutants from natural and artificial soils and comparison with bioaccumulation in earthworms.
    Bielská L; Šmídová K; Hofman J
    Environ Pollut; 2013 May; 176():48-54. PubMed ID: 23416268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of a nonionic surfactant on biodegradation of slowly desorbing PAHs in contaminated soils.
    Bueno-Montes M; Springael D; Ortega-Calvo JJ
    Environ Sci Technol; 2011 Apr; 45(7):3019-26. PubMed ID: 21375290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in the contents of selected polycyclic aromatic hydrocarbons in soils of various types.
    Banach-Szott M; Debska B; Wisniewska A; Pakula J
    Environ Sci Pollut Res Int; 2015 Apr; 22(7):5059-69. PubMed ID: 25586610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of corn straw on dissipation of polycyclic aromatic hydrocarbons and potential application of backpropagation artificial neural network prediction model for PAHs bioremediation.
    Bao H; Wang J; Li J; Zhang H; Wu F
    Ecotoxicol Environ Saf; 2019 Dec; 186():109745. PubMed ID: 31606644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-liquid-phase system: A promising technique for predicting bioavailability of polycyclic aromatic hydrocarbons in long-term contaminated soils.
    Wang C; Wang Z; Li Z; Ahmad R
    Chemosphere; 2017 Feb; 169():685-692. PubMed ID: 27914353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Advances in studies on the effect of surfactant on bioavailability of polycylcic aromatic hydrocarbons (PAHs) in soil].
    Jiang X; Jing X; Gao X; Ou Z
    Ying Yong Sheng Tai Xue Bao; 2002 Sep; 13(9):1179-86. PubMed ID: 12561188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.