These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Inducible expression of Bs2 R gene from Capsicum chacoense in sweet orange (Citrus sinensis L. Osbeck) confers enhanced resistance to citrus canker disease. Sendín LN; Orce IG; Gómez RL; Enrique R; Grellet Bournonville CF; Noguera AS; Vojnov AA; Marano MR; Castagnaro AP; Filippone MP Plant Mol Biol; 2017 Apr; 93(6):607-621. PubMed ID: 28155188 [TBL] [Abstract][Full Text] [Related]
3. Increased resistance against citrus canker mediated by a citrus mitogen-activated protein kinase. de Oliveira ML; de Lima Silva CC; Abe VY; Costa MG; Cernadas RA; Benedetti CE Mol Plant Microbe Interact; 2013 Oct; 26(10):1190-9. PubMed ID: 23777433 [TBL] [Abstract][Full Text] [Related]
4. Transformation of sweet orange [Citrus sinensis (L.) Osbeck] with pthA-nls for acquiring resistance to citrus canker disease. Yang L; Hu C; Li N; Zhang J; Yan J; Deng Z Plant Mol Biol; 2011 Jan; 75(1-2):11-23. PubMed ID: 20972821 [TBL] [Abstract][Full Text] [Related]
5. Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. tabaci and Xanthomonas citri, but not Candidatus Liberibacter asiaticus. Hao G; Zhang S; Stover E PLoS One; 2017; 12(10):e0186810. PubMed ID: 29049366 [TBL] [Abstract][Full Text] [Related]
6. Expression of Xylella fastidiosa RpfF in citrus disrupts signaling in Xanthomonas citri subsp. citri and thereby its virulence. Caserta R; Picchi SC; Takita MA; Tomaz JP; Pereira WE; Machado MA; Ionescu M; Lindow S; De Souza AA Mol Plant Microbe Interact; 2014 Nov; 27(11):1241-52. PubMed ID: 25099341 [TBL] [Abstract][Full Text] [Related]
7. The Genetic Transformation of Sweet Orange (Citrus sinensis L. Osbeck) for Enhanced Resistance to Citrus Canker. Sendin LN; Filippone MP Methods Mol Biol; 2019; 1864():179-190. PubMed ID: 30415337 [TBL] [Abstract][Full Text] [Related]
8. Foliar application of biofilm formation-inhibiting compounds enhances control of citrus canker caused by Xanthomonas citri subsp. citri. Li J; Wang N Phytopathology; 2014 Feb; 104(2):134-42. PubMed ID: 23901828 [TBL] [Abstract][Full Text] [Related]
9. Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens. Rivero M; Furman N; Mencacci N; Picca P; Toum L; Lentz E; Bravo-Almonacid F; Mentaberry A J Biotechnol; 2012 Jan; 157(2):334-43. PubMed ID: 22115953 [TBL] [Abstract][Full Text] [Related]
10. Hexyl gallate for the control of citrus canker caused by Xanthomonas citri subsp citri. Cavalca LB; Zamuner CFC; Saldanha LL; Polaquini CR; Regasini LO; Behlau F; Ferreira H Microbiologyopen; 2020 Sep; 9(9):e1104. PubMed ID: 32761800 [TBL] [Abstract][Full Text] [Related]
11. Reduced Susceptibility to Xanthomonas citri in Transgenic Citrus Expressing the FLS2 Receptor From Nicotiana benthamiana. Hao G; Pitino M; Duan Y; Stover E Mol Plant Microbe Interact; 2016 Feb; 29(2):132-42. PubMed ID: 26554734 [TBL] [Abstract][Full Text] [Related]
12. Ectopic accumulation of linalool confers resistance to Xanthomonas citri subsp. citri in transgenic sweet orange plants. Shimada T; Endo T; Rodríguez A; Fujii H; Goto S; Matsuura T; Hojo Y; Ikeda Y; Mori IC; Fujikawa T; Peña L; Omura M Tree Physiol; 2017 May; 37(5):654-664. PubMed ID: 28131994 [TBL] [Abstract][Full Text] [Related]
13. Overexpressing GH3.1 and GH3.1L reduces susceptibility to Xanthomonas citri subsp. citri by repressing auxin signaling in citrus (Citrus sinensis Osbeck). Zou X; Long J; Zhao K; Peng A; Chen M; Long Q; He Y; Chen S PLoS One; 2019; 14(12):e0220017. PubMed ID: 31830052 [TBL] [Abstract][Full Text] [Related]
14. Ectopic expression of MdSPDS1 in sweet orange (Citrus sinensis Osbeck) reduces canker susceptibility: involvement of H₂O₂ production and transcriptional alteration. Fu XZ; Chen CW; Wang Y; Liu JH; Moriguchi T BMC Plant Biol; 2011 Mar; 11():55. PubMed ID: 21439092 [TBL] [Abstract][Full Text] [Related]
15. Role of the Citrus sinensis RNA deadenylase CsCAF1 in citrus canker resistance. Shimo HM; Terassi C; Lima Silva CC; Zanella JL; Mercaldi GF; Rocco SA; Benedetti CE Mol Plant Pathol; 2019 Aug; 20(8):1105-1118. PubMed ID: 31115151 [TBL] [Abstract][Full Text] [Related]
16. Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4:dCsLOB1.3 infection. Jia H; Orbovic V; Jones JB; Wang N Plant Biotechnol J; 2016 May; 14(5):1291-301. PubMed ID: 27071672 [TBL] [Abstract][Full Text] [Related]
17. CsLOB1 regulates susceptibility to citrus canker through promoting cell proliferation in citrus. Zou X; Du M; Liu Y; Wu L; Xu L; Long Q; Peng A; He Y; Andrade M; Chen S Plant J; 2021 May; 106(4):1039-1057. PubMed ID: 33754403 [TBL] [Abstract][Full Text] [Related]