BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 23896350)

  • 41. Time-dependent progression of neurogenic lower urinary tract dysfunction after spinal cord injury in the mouse model.
    Saito T; Gotoh D; Wada N; Tyagi P; Minagawa T; Ogawa T; Ishizuka O; Yoshimura N
    Am J Physiol Renal Physiol; 2021 Jul; 321(1):F26-F32. PubMed ID: 33969698
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of M2 and M3 muscarinic acetylcholine receptor subtypes in activation of bladder afferent pathways in spinal cord injured rats.
    Matsumoto Y; Miyazato M; Yokoyama H; Kita M; Hirao Y; Chancellor MB; Yoshimura N
    Urology; 2012 May; 79(5):1184.e15-20. PubMed ID: 22386753
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Roles of peripheral and central nicotinic receptors in the micturition reflex in rats.
    Masuda H; Hayashi Y; Chancellor MB; Kihara K; de Groat WC; de Miguel F; Yoshimura N
    J Urol; 2006 Jul; 176(1):374-9. PubMed ID: 16753446
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Abnormal axonal physiology is associated with altered expression and distribution of Kv1.1 and Kv1.2 K+ channels after chronic spinal cord injury.
    Nashmi R; Jones OT; Fehlings MG
    Eur J Neurosci; 2000 Feb; 12(2):491-506. PubMed ID: 10712629
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transient receptor potential channel A1 involved in sensory transduction of rat urinary bladder through C-fiber pathway.
    Du S; Araki I; Yoshiyama M; Nomura T; Takeda M
    Urology; 2007 Oct; 70(4):826-31. PubMed ID: 17991581
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Changes in pituitary adenylate cyclase activating polypeptide expression in urinary bladder pathways after spinal cord injury.
    Zvarova K; Dunleavy JD; Vizzard MA
    Exp Neurol; 2005 Mar; 192(1):46-59. PubMed ID: 15698618
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rescue of alpha-SNS sodium channel expression in small dorsal root ganglion neurons after axotomy by nerve growth factor in vivo.
    Dib-Hajj SD; Black JA; Cummins TR; Kenney AM; Kocsis JD; Waxman SG
    J Neurophysiol; 1998 May; 79(5):2668-76. PubMed ID: 9582237
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of C-afferent fibres in the mechanism of action of sacral nerve root neuromodulation in chronic spinal cord injury.
    Shaker H; Wang Y; Loung D; Balbaa L; Fehlings MG; Hassouna MM
    BJU Int; 2000 May; 85(7):905-10. PubMed ID: 10792175
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Up-regulation of tyrosine kinase (Trka, Trkb) receptor expression and phosphorylation in lumbosacral dorsal root ganglia after chronic spinal cord (T8-T10) injury.
    Qiao L; Vizzard MA
    J Comp Neurol; 2002 Jul; 449(3):217-30. PubMed ID: 12115676
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anatomical evidence for two spinal 'afferent-interneuron-efferent' reflex pathways involved in micturition in the rat: a 'pelvic nerve' reflex pathway and a 'sacrolumbar intersegmental' reflex pathway.
    Vera PL; Nadelhaft I
    Brain Res; 2000 Nov; 883(1):107-18. PubMed ID: 11063993
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Manipulation of the potassium channel Kv1.1 and its effect on neuronal excitability in rat sensory neurons.
    Chi XX; Nicol GD
    J Neurophysiol; 2007 Nov; 98(5):2683-92. PubMed ID: 17855588
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dendrotoxin-sensitive K(+) currents contribute to accommodation in murine spiral ganglion neurons.
    Mo ZL; Adamson CL; Davis RL
    J Physiol; 2002 Aug; 542(Pt 3):763-78. PubMed ID: 12154177
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Differential role of GDNF and NGF in the maintenance of two TTX-resistant sodium channels in adult DRG neurons.
    Fjell J; Cummins TR; Dib-Hajj SD; Fried K; Black JA; Waxman SG
    Brain Res Mol Brain Res; 1999 Apr; 67(2):267-82. PubMed ID: 10216225
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kv1.1 channels of dorsal root ganglion neurons are inhibited by n-butyl-p-aminobenzoate, a promising anesthetic for the treatment of chronic pain.
    Beekwilder JP; O'Leary ME; van den Broek LP; van Kempen GT; Ypey DL; van den Berg RJ
    J Pharmacol Exp Ther; 2003 Feb; 304(2):531-8. PubMed ID: 12538804
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Calcineurin Dysregulation Underlies Spinal Cord Injury-Induced K
    Zemel BM; Muqeem T; Brown EV; Goulão M; Urban MW; Tymanskyj SR; Lepore AC; Covarrubias M
    J Neurosci; 2017 Aug; 37(34):8256-8272. PubMed ID: 28751455
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Differential action potentials and firing patterns in injured and uninjured small dorsal root ganglion neurons after nerve injury.
    Zhang XF; Zhu CZ; Thimmapaya R; Choi WS; Honore P; Scott VE; Kroeger PE; Sullivan JP; Faltynek CR; Gopalakrishnan M; Shieh CC
    Brain Res; 2004 May; 1009(1-2):147-58. PubMed ID: 15120592
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular determinants of afferent sensitization in a rat model of cystitis with urothelial barrier dysfunction.
    Montalbetti N; Rooney JG; Rued AC; Carattino MD
    J Neurophysiol; 2019 Sep; 122(3):1136-1146. PubMed ID: 31314637
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A positive modulator of K Ca 2 and K Ca 3 channels, 4,5-dichloro-1,3-diethyl-1,3-dihydro-benzoimidazol-2-one (NS4591), inhibits bladder afferent firing in vitro and bladder overactivity in vivo.
    Hougaard C; Fraser MO; Chien C; Bookout A; Katofiasc M; Jensen BS; Rode F; Bitsch-Nørhave J; Teuber L; Thor KB; Strøbaek D; Burgard EC; Rønn LC
    J Pharmacol Exp Ther; 2009 Jan; 328(1):28-39. PubMed ID: 18820135
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phase relation changes between the firings of alpha and gamma-motoneurons and muscle spindle afferents in the sacral micturition centre during continence functions in brain-dead human and patients with spinal cord injury.
    Schalow G
    Electromyogr Clin Neurophysiol; 2010; 50(1):3-27. PubMed ID: 20349554
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Slow development of bladder malfunction parallels spinal cord fiber sprouting and interneurons' loss after spinal cord transection.
    Sartori AM; Hofer AS; Scheuber MI; Rust R; Kessler TM; Schwab ME
    Exp Neurol; 2022 Feb; 348():113937. PubMed ID: 34826427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.