These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 23896442)

  • 1. Production of biodiesel from microalgae Chlamydomonas polypyrenoideum grown on dairy industry wastewater.
    Kothari R; Prasad R; Kumar V; Singh DP
    Bioresour Technol; 2013 Sep; 144():499-503. PubMed ID: 23896442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioremediation of domestic and industrial wastewaters integrated with enhanced biodiesel production using novel oleaginous microalgae.
    Arora N; Patel A; Sartaj K; Pruthi PA; Pruthi V
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20997-21007. PubMed ID: 27488714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cultivation of microalgae in dairy effluent for oil production and removal of organic pollution load.
    Ummalyma SB; Sukumaran RK
    Bioresour Technol; 2014 Aug; 165():295-301. PubMed ID: 24703181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microalgal biomass generation by phycoremediation of dairy industry wastewater: An integrated approach towards sustainable biofuel production.
    Chokshi K; Pancha I; Ghosh A; Mishra S
    Bioresour Technol; 2016 Dec; 221():455-460. PubMed ID: 27668878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The feasibility of biodiesel production by microalgae using industrial wastewater.
    Wu LF; Chen PC; Huang AP; Lee CM
    Bioresour Technol; 2012 Jun; 113():14-8. PubMed ID: 22269054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production.
    Qin L; Wang Z; Sun Y; Shu Q; Feng P; Zhu L; Xu J; Yuan Z
    Environ Sci Pollut Res Int; 2016 May; 23(9):8379-87. PubMed ID: 26780059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An eco-friendly strategy for dairy wastewater remediation with high lipid microalgae-bacterial biomass production.
    Biswas T; Bhushan S; Prajapati SK; Ray Chaudhuri S
    J Environ Manage; 2021 May; 286():112196. PubMed ID: 33639423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microalgae.
    Guo WQ; Zheng HS; Li S; Du JS; Feng XC; Yin RL; Wu QL; Ren NQ; Chang JS
    Bioresour Technol; 2016 Dec; 221():284-290. PubMed ID: 27643737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodiesel production from algae grown on food industry wastewater.
    Mureed K; Kanwal S; Hussain A; Noureen S; Hussain S; Ahmad S; Ahmad M; Waqas R
    Environ Monit Assess; 2018 Apr; 190(5):271. PubMed ID: 29633020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phycoremediation of Tannery Wastewater Using Microalgae Scenedesmus Species.
    Ajayan KV; Selvaraju M; Unnikannan P; Sruthi P
    Int J Phytoremediation; 2015; 17(10):907-16. PubMed ID: 25580934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainability and economic evaluation of microalgae grown in brewery wastewater.
    Mata TM; Mendes AM; Caetano NS; Martins AA
    Bioresour Technol; 2014 Sep; 168():151-8. PubMed ID: 24830377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production.
    Yadav G; Dash SK; Sen R
    Sci Total Environ; 2019 Oct; 688():129-135. PubMed ID: 31229810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microalgal biomass and lipid production in mixed municipal, dairy, pulp and paper wastewater together with added flue gases.
    Gentili FG
    Bioresour Technol; 2014 Oct; 169():27-32. PubMed ID: 25016463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy waste water: an integrated approach for treatment and biofuel production.
    Kothari R; Pathak VV; Kumar V; Singh DP
    Bioresour Technol; 2012 Jul; 116():466-70. PubMed ID: 22525258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cultivation of microalgae Chlorella zofingiensis on municipal wastewater and biogas slurry towards bioenergy.
    Zhou W; Wang Z; Xu J; Ma L
    J Biosci Bioeng; 2018 Nov; 126(5):644-648. PubMed ID: 29801764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microalgae on distillery wastewater treatment for improved biodiesel production and cellulose nanofiber synthesis: A sustainable biorefinery approach.
    Vasistha S; Balakrishnan D; Manivannan A; Rai MP
    Chemosphere; 2023 Feb; 315():137666. PubMed ID: 36586450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phycoremediation of municipal wastewater by microalgae to produce biofuel.
    Singh AK; Sharma N; Farooqi H; Abdin MZ; Mock T; Kumar S
    Int J Phytoremediation; 2017 Sep; 19(9):805-812. PubMed ID: 28156133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications.
    Chinnasamy S; Bhatnagar A; Hunt RW; Das KC
    Bioresour Technol; 2010 May; 101(9):3097-105. PubMed ID: 20053551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodiesel production from wet microalgae feedstock using sequential wet extraction/transesterification and direct transesterification processes.
    Chen CL; Huang CC; Ho KC; Hsiao PX; Wu MS; Chang JS
    Bioresour Technol; 2015 Oct; 194():179-86. PubMed ID: 26196418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diplosphaera sp. MM1 - A microalga with phycoremediation and biomethane potential.
    Liu C; Subashchandrabose SR; Megharaj M; Hu Z; Xiao B
    Bioresour Technol; 2016 Oct; 218():1170-7. PubMed ID: 27472493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.