BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 23896442)

  • 1. Production of biodiesel from microalgae Chlamydomonas polypyrenoideum grown on dairy industry wastewater.
    Kothari R; Prasad R; Kumar V; Singh DP
    Bioresour Technol; 2013 Sep; 144():499-503. PubMed ID: 23896442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioremediation of domestic and industrial wastewaters integrated with enhanced biodiesel production using novel oleaginous microalgae.
    Arora N; Patel A; Sartaj K; Pruthi PA; Pruthi V
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20997-21007. PubMed ID: 27488714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cultivation of microalgae in dairy effluent for oil production and removal of organic pollution load.
    Ummalyma SB; Sukumaran RK
    Bioresour Technol; 2014 Aug; 165():295-301. PubMed ID: 24703181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microalgal biomass generation by phycoremediation of dairy industry wastewater: An integrated approach towards sustainable biofuel production.
    Chokshi K; Pancha I; Ghosh A; Mishra S
    Bioresour Technol; 2016 Dec; 221():455-460. PubMed ID: 27668878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The feasibility of biodiesel production by microalgae using industrial wastewater.
    Wu LF; Chen PC; Huang AP; Lee CM
    Bioresour Technol; 2012 Jun; 113():14-8. PubMed ID: 22269054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production.
    Qin L; Wang Z; Sun Y; Shu Q; Feng P; Zhu L; Xu J; Yuan Z
    Environ Sci Pollut Res Int; 2016 May; 23(9):8379-87. PubMed ID: 26780059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An eco-friendly strategy for dairy wastewater remediation with high lipid microalgae-bacterial biomass production.
    Biswas T; Bhushan S; Prajapati SK; Ray Chaudhuri S
    J Environ Manage; 2021 May; 286():112196. PubMed ID: 33639423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microalgae.
    Guo WQ; Zheng HS; Li S; Du JS; Feng XC; Yin RL; Wu QL; Ren NQ; Chang JS
    Bioresour Technol; 2016 Dec; 221():284-290. PubMed ID: 27643737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodiesel production from algae grown on food industry wastewater.
    Mureed K; Kanwal S; Hussain A; Noureen S; Hussain S; Ahmad S; Ahmad M; Waqas R
    Environ Monit Assess; 2018 Apr; 190(5):271. PubMed ID: 29633020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phycoremediation of Tannery Wastewater Using Microalgae Scenedesmus Species.
    Ajayan KV; Selvaraju M; Unnikannan P; Sruthi P
    Int J Phytoremediation; 2015; 17(10):907-16. PubMed ID: 25580934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainability and economic evaluation of microalgae grown in brewery wastewater.
    Mata TM; Mendes AM; Caetano NS; Martins AA
    Bioresour Technol; 2014 Sep; 168():151-8. PubMed ID: 24830377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production.
    Yadav G; Dash SK; Sen R
    Sci Total Environ; 2019 Oct; 688():129-135. PubMed ID: 31229810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microalgal biomass and lipid production in mixed municipal, dairy, pulp and paper wastewater together with added flue gases.
    Gentili FG
    Bioresour Technol; 2014 Oct; 169():27-32. PubMed ID: 25016463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy waste water: an integrated approach for treatment and biofuel production.
    Kothari R; Pathak VV; Kumar V; Singh DP
    Bioresour Technol; 2012 Jul; 116():466-70. PubMed ID: 22525258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cultivation of microalgae Chlorella zofingiensis on municipal wastewater and biogas slurry towards bioenergy.
    Zhou W; Wang Z; Xu J; Ma L
    J Biosci Bioeng; 2018 Nov; 126(5):644-648. PubMed ID: 29801764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microalgae on distillery wastewater treatment for improved biodiesel production and cellulose nanofiber synthesis: A sustainable biorefinery approach.
    Vasistha S; Balakrishnan D; Manivannan A; Rai MP
    Chemosphere; 2023 Feb; 315():137666. PubMed ID: 36586450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phycoremediation of municipal wastewater by microalgae to produce biofuel.
    Singh AK; Sharma N; Farooqi H; Abdin MZ; Mock T; Kumar S
    Int J Phytoremediation; 2017 Sep; 19(9):805-812. PubMed ID: 28156133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications.
    Chinnasamy S; Bhatnagar A; Hunt RW; Das KC
    Bioresour Technol; 2010 May; 101(9):3097-105. PubMed ID: 20053551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodiesel production from wet microalgae feedstock using sequential wet extraction/transesterification and direct transesterification processes.
    Chen CL; Huang CC; Ho KC; Hsiao PX; Wu MS; Chang JS
    Bioresour Technol; 2015 Oct; 194():179-86. PubMed ID: 26196418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diplosphaera sp. MM1 - A microalga with phycoremediation and biomethane potential.
    Liu C; Subashchandrabose SR; Megharaj M; Hu Z; Xiao B
    Bioresour Technol; 2016 Oct; 218():1170-7. PubMed ID: 27472493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.