These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 2389668)
1. Differential distribution of immunoreactive angiotensinogen in the hind-brain and spinal cord of neonatal and adult rats. Sood PP; Richoux JP; Panigel M; Bouhnik J; Wegmann R Acta Anat (Basel); 1990; 138(3):230-7. PubMed ID: 2389668 [TBL] [Abstract][Full Text] [Related]
2. Angiotensinogen in the developing rat fetal hindbrain and spinal cord from 18th to 20th day of gestation: an immunocytochemical study. Sood PP; Richoux JP; Panigel M; Bouhnik J; Wegmann R Neuroscience; 1990; 37(2):517-22. PubMed ID: 2133356 [TBL] [Abstract][Full Text] [Related]
3. Distribution of glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes in the rat brain. II. Mesencephalon, rhombencephalon and spinal cord. Hajós F; Kálmán M Exp Brain Res; 1989; 78(1):164-73. PubMed ID: 2591510 [TBL] [Abstract][Full Text] [Related]
4. Distribution of nerve growth factor receptor-like immunoreactivity in the adult rat central nervous system. Effect of colchicine and correlation with the cholinergic system--II. Brainstem, cerebellum and spinal cord. Pioro EP; Cuello AC Neuroscience; 1990; 34(1):89-110. PubMed ID: 2158008 [TBL] [Abstract][Full Text] [Related]
5. In vivo infusions of exogenous growth factors into the fourth ventricle of the adult mouse brain increase the proliferation of neural progenitors around the fourth ventricle and the central canal of the spinal cord. Martens DJ; Seaberg RM; van der Kooy D Eur J Neurosci; 2002 Sep; 16(6):1045-57. PubMed ID: 12383233 [TBL] [Abstract][Full Text] [Related]
6. Development of catecholaminergic projections to the spinal cord in the North American opossum, Didelphis virginiana. Pindzola RR; Ho RH; Martin GF J Comp Neurol; 1990 Apr; 294(3):399-417. PubMed ID: 1971285 [TBL] [Abstract][Full Text] [Related]
7. Distribution and origin of corticotropin-releasing factor-immunoreactive axons in the female rat lumbosacral spinal cord. Puder BA; Papka RE J Neurosci Res; 2001 Dec; 66(6):1217-25. PubMed ID: 11746455 [TBL] [Abstract][Full Text] [Related]
8. Immunocytochemical localization of angiotensinogen in the fetal and neonatal rat brain. Mungall BA; Shinkel TA; Sernia C Neuroscience; 1995 Jul; 67(2):505-24. PubMed ID: 7675182 [TBL] [Abstract][Full Text] [Related]
9. The serotoninergic bulbospinal system and brainstem-spinal cord content of serotonin-, TRH-, and substance P-like immunoreactivity in the aged rat with special reference to the spinal cord motor nucleus. Johnson H; Ulfhake B; Dagerlind A; Bennett GW; Fone KC; Hökfelt T Synapse; 1993 Sep; 15(1):63-89. PubMed ID: 7508641 [TBL] [Abstract][Full Text] [Related]
10. Intraspinal transplantation of embryonic spinal cord tissue in neonatal and adult rats. Reier PJ; Bregman BS; Wujek JR J Comp Neurol; 1986 May; 247(3):275-96. PubMed ID: 3522658 [TBL] [Abstract][Full Text] [Related]
11. Expression of synaptophysin during the prenatal development of the rat spinal cord: correlation with basic differentiation processes of neurons. Bergmann M; Lahr G; Mayerhofer A; Gratzl M Neuroscience; 1991; 42(2):569-82. PubMed ID: 1910156 [TBL] [Abstract][Full Text] [Related]
12. Widespread distribution of substance P- and somatostatin-immunoreactive elements in the spinal cord of the neonatal rat. Ho RH Cell Tissue Res; 1983; 232(3):471-86. PubMed ID: 6192926 [TBL] [Abstract][Full Text] [Related]
14. Immunohistochemical localization of calretinin in the dorsal root ganglion and spinal cord of the rat. Ren K; Ruda MA; Jacobowitz DM Brain Res Bull; 1993; 31(1-2):13-22. PubMed ID: 7680942 [TBL] [Abstract][Full Text] [Related]
15. Differential expression of estrogen receptors alpha and beta in the spinal cord during postnatal development: localization in glial cells. Platania P; Laureanti F; Bellomo M; Giuffrida R; Giuffrida-Stella AM; Catania MV; Sortino MA Neuroendocrinology; 2003 May; 77(5):334-40. PubMed ID: 12806179 [TBL] [Abstract][Full Text] [Related]
16. Ontogeny of gamma-aminobutyric acid-immunoreactive neurons in the rhombencephalon and spinal cord of the sea lamprey. Meléndez-Ferro M; Pérez-Costas E; Villar-Cheda B; Rodríguez-Muñoz R; Anadón R; Rodicio MC J Comp Neurol; 2003 Sep; 464(1):17-35. PubMed ID: 12866126 [TBL] [Abstract][Full Text] [Related]
17. Chemoarchitecture of the dorsal column nucleus of the larval sea lamprey. Rodicio MC; Villar-Cerviño V; Abalo XM; Villar-Cheda B; Meléndez-Ferro M; Pérez-Costas E; Anadón R Brain Res Bull; 2005 Sep; 66(4-6):536-40. PubMed ID: 16144645 [TBL] [Abstract][Full Text] [Related]
18. Immunocytochemical evidence for a progesterone receptor in neurons and glial cells of the rat spinal cord. Labombarda F; Guennoun R; Gonzalez S; Roig P; Lima A; Schumacher M; De Nicola AF Neurosci Lett; 2000 Jul; 288(1):29-32. PubMed ID: 10869808 [TBL] [Abstract][Full Text] [Related]
19. Distribution of glycinergic neurons in the brain of glycine transporter-2 transgenic Tg(glyt2:Gfp) adult zebrafish: relationship to brain-spinal descending systems. Barreiro-Iglesias A; Mysiak KS; Adrio F; Rodicio MC; Becker CG; Becker T; Anadón R J Comp Neurol; 2013 Feb; 521(2):389-425. PubMed ID: 22736487 [TBL] [Abstract][Full Text] [Related]
20. Altered acidic and basic fibroblast growth factor expression following spinal cord injury. Koshinaga M; Sanon HR; Whittemore SR Exp Neurol; 1993 Mar; 120(1):32-48. PubMed ID: 7682969 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]