These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 23896974)
1. Engineering of the glycerol decomposition pathway and cofactor regulation in an industrial yeast improves ethanol production. Zhang L; Tang Y; Guo Z; Shi G J Ind Microbiol Biotechnol; 2013 Oct; 40(10):1153-60. PubMed ID: 23896974 [TBL] [Abstract][Full Text] [Related]
2. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Guadalupe Medina V; Almering MJ; van Maris AJ; Pronk JT Appl Environ Microbiol; 2010 Jan; 76(1):190-5. PubMed ID: 19915031 [TBL] [Abstract][Full Text] [Related]
3. Engineering of glycerol utilization pathway for ethanol production by Saccharomyces cerevisiae. Yu KO; Kim SW; Han SO Bioresour Technol; 2010 Jun; 101(11):4157-61. PubMed ID: 20149645 [TBL] [Abstract][Full Text] [Related]
4. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6. Papapetridis I; van Dijk M; Dobbe AP; Metz B; Pronk JT; van Maris AJ Microb Cell Fact; 2016 Apr; 15():67. PubMed ID: 27118055 [TBL] [Abstract][Full Text] [Related]
5. Improving the ethanol yield by reducing glycerol formation using cofactor regulation in Saccharomyces cerevisiae. Zhang L; Tang Y; Guo ZP; Ding ZY; Shi GY Biotechnol Lett; 2011 Jul; 33(7):1375-80. PubMed ID: 21400237 [TBL] [Abstract][Full Text] [Related]
6. Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations. Guadalupe-Medina V; Metz B; Oud B; van Der Graaf CM; Mans R; Pronk JT; van Maris AJ Microb Biotechnol; 2014 Jan; 7(1):44-53. PubMed ID: 24004455 [TBL] [Abstract][Full Text] [Related]
7. Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance. Guo ZP; Zhang L; Ding ZY; Shi GY Metab Eng; 2011 Jan; 13(1):49-59. PubMed ID: 21126600 [TBL] [Abstract][Full Text] [Related]
8. Interruption of glycerol pathway in industrial alcoholic yeasts to improve the ethanol production. Guo ZP; Zhang L; Ding ZY; Wang ZX; Shi GY Appl Microbiol Biotechnol; 2009 Feb; 82(2):287-92. PubMed ID: 19018525 [TBL] [Abstract][Full Text] [Related]
9. [Effects of overexpression of NADH kinase gene on ethanol fermentation by Saccharomyces cerevisiae]. Wang H; Zhang L; Shi G Sheng Wu Gong Cheng Xue Bao; 2014 Sep; 30(9):1381-9. PubMed ID: 25720153 [TBL] [Abstract][Full Text] [Related]
10. Efficient Conversion of Glycerol to Ethanol by an Engineered Saccharomyces cerevisiae Strain. Khattab SMR; Watanabe T Appl Environ Microbiol; 2021 Nov; 87(23):e0026821. PubMed ID: 34524902 [TBL] [Abstract][Full Text] [Related]
11. Co-cultivation of Saccharomyces cerevisiae strains combines advantages of different metabolic engineering strategies for improved ethanol yield. van Aalst ACA; van der Meulen IS; Jansen MLA; Mans R; Pronk JT Metab Eng; 2023 Nov; 80():151-162. PubMed ID: 37751790 [TBL] [Abstract][Full Text] [Related]
12. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Toivari MH; Aristidou A; Ruohonen L; Penttilä M Metab Eng; 2001 Jul; 3(3):236-49. PubMed ID: 11461146 [TBL] [Abstract][Full Text] [Related]
13. Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4 M NaCl. Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway. Norbeck J; Blomberg A J Biol Chem; 1997 Feb; 272(9):5544-54. PubMed ID: 9038161 [TBL] [Abstract][Full Text] [Related]
14. The combination of glycerol metabolic engineering and drug resistance marker-aided genome shuffling to improve very-high-gravity fermentation performances of industrial Saccharomyces cerevisiae. Wang PM; Zheng DQ; Liu TZ; Tao XL; Feng MG; Min H; Jiang XH; Wu XC Bioresour Technol; 2012 Mar; 108():203-10. PubMed ID: 22269055 [TBL] [Abstract][Full Text] [Related]
15. Characterization of GCY1 in Saccharomyces cerevisiae by metabolic profiling. Jung JY; Kim TY; Ng CY; Oh MK J Appl Microbiol; 2012 Dec; 113(6):1468-78. PubMed ID: 22979944 [TBL] [Abstract][Full Text] [Related]
16. Engineering a glycerol utilization pathway in Corynebacterium glutamicum for succinate production under O2 deprivation. Wang C; Cai H; Chen Z; Zhou Z Biotechnol Lett; 2016 Oct; 38(10):1791-7. PubMed ID: 27395064 [TBL] [Abstract][Full Text] [Related]
17. Improving ethanol productivity by modification of glycolytic redox factor generation in glycerol-3-phosphate dehydrogenase mutants of an industrial ethanol yeast. Guo ZP; Zhang L; Ding ZY; Wang ZX; Shi GY J Ind Microbiol Biotechnol; 2011 Aug; 38(8):935-43. PubMed ID: 20824484 [TBL] [Abstract][Full Text] [Related]
18. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase. Matsushika A; Sawayama S Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018 [TBL] [Abstract][Full Text] [Related]
19. Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction. Ida Y; Hirasawa T; Furusawa C; Shimizu H Appl Microbiol Biotechnol; 2013 Jun; 97(11):4811-9. PubMed ID: 23435983 [TBL] [Abstract][Full Text] [Related]
20. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase. Henningsen BM; Hon S; Covalla SF; Sonu C; Argyros DA; Barrett TF; Wiswall E; Froehlich AC; Zelle RM Appl Environ Microbiol; 2015 Dec; 81(23):8108-17. PubMed ID: 26386051 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]