These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 238971)

  • 1. Extradiol cleavage of 3-substituted catechols by an intradiol dioxygenase, pyrocatechase, from a Pseudomonad.
    Fujiwara M; Golovleva LA; Saeki Y; Nozaki M; Hayaishi O
    J Biol Chem; 1975 Jul; 250(13):4848-55. PubMed ID: 238971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cleavage of pyrogallol by non-heme iron-containing dioxygenases.
    Saeki Y; Nozaki M; Senoh S
    J Biol Chem; 1980 Sep; 255(18):8465-71. PubMed ID: 6773944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad.
    Dorn E; Knackmuss HJ
    Biochem J; 1978 Jul; 174(1):73-84. PubMed ID: 697765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol.
    Klecka GM; Gibson DT
    Appl Environ Microbiol; 1981 May; 41(5):1159-65. PubMed ID: 7259155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning of a gene encoding hydroxyquinol 1,2-dioxygenase that catalyzes both intradiol and extradiol ring cleavage of catechol.
    Murakami S; Okuno T; Matsumura E; Takenaka S; Shinke R; Aoki K
    Biosci Biotechnol Biochem; 1999 May; 63(5):859-65. PubMed ID: 10380628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and partial characterization of an extradiol non-haem iron dioxygenase which preferentially cleaves 3-methylcatechol.
    Wallis MG; Chapman SK
    Biochem J; 1990 Mar; 266(2):605-9. PubMed ID: 2317207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification of 3,5-dichlorocatechol 1,2-dioxygenase, a nonheme iron dioxygenase and a key enzyme in the biodegradation of a herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), from Pseudomonas cepacia CSV90.
    Bhat MA; Ishida T; Horiike K; Vaidyanathan CS; Nozaki M
    Arch Biochem Biophys; 1993 Feb; 300(2):738-46. PubMed ID: 7679568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of extradiol aromatic ring-cleaving homoprotocatechuate 2,3-dioxygenase into an intradiol cleaving enzyme.
    Groce SL; Lipscomb JD
    J Am Chem Soc; 2003 Oct; 125(39):11780-1. PubMed ID: 14505375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactions of 3-ethylcatechol and 3-(methylthio)catechol with catechol dioxygenases.
    Pascal RA; Huang DS
    Arch Biochem Biophys; 1986 Jul; 248(1):130-7. PubMed ID: 3015028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative structure/activity relationship for the rate of conversion of C4-substituted catechols by catechol-1,2-dioxygenase from Pseudomonas putida (arvilla) C1.
    Ridder L; Briganti F; Boersma MG; Boeren S; Vis EH; Scozzafava A; Veeger C; Rietjens IM
    Eur J Biochem; 1998 Oct; 257(1):92-100. PubMed ID: 9799107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of acid-base catalysis in the extradiol and intradiol catechol dioxygenase reactions using a broad specificity mutant enzyme and model chemistry.
    Brivio M; Schlosrich J; Ahmad M; Tolond C; Bugg TD
    Org Biomol Chem; 2009 Apr; 7(7):1368-73. PubMed ID: 19300822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate specificity of catechol 2,3-dioxygenase encoded by TOL plasmid pWW0 of Pseudomonas putida and its relationship to cell growth.
    Cerdan P; Wasserfallen A; Rekik M; Timmis KN; Harayama S
    J Bacteriol; 1994 Oct; 176(19):6074-81. PubMed ID: 7928969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extradiol cleavage of 3-methylcatechol by catechol 1,2-dioxygenase from various microorganisms.
    Hou CT; Patel R; Lillard MO
    Appl Environ Microbiol; 1977 Mar; 33(3):725-7. PubMed ID: 16345232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel iron(III) complexes of sterically hindered 4N ligands: regioselectivity in biomimetic extradiol cleavage of catechols.
    Mayilmurugan R; Stoeckli-Evans H; Palaniandavar M
    Inorg Chem; 2008 Aug; 47(15):6645-58. PubMed ID: 18597419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-metabolism of methyl- and chloro-substituted catechols by an Achromobacter sp. possessing a new meta-cleaving oxygenase.
    Horvath RS
    Biochem J; 1970 Oct; 119(5):871-6. PubMed ID: 5492853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial aromatic ring-cleavage enzymes are classified into two different gene families.
    Harayama S; Rekik M
    J Biol Chem; 1989 Sep; 264(26):15328-33. PubMed ID: 2670937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial degradation of chloroaromatics: use of the meta-cleavage pathway for mineralization of chlorobenzene.
    Mars AE; Kasberg T; Kaschabek SR; van Agteren MH; Janssen DB; Reineke W
    J Bacteriol; 1997 Jul; 179(14):4530-7. PubMed ID: 9226262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray absorption spectroscopic studies of the Fe(II) active site of catechol 2,3-dioxygenase. Implications for the extradiol cleavage mechanism.
    Shu L; Chiou YM; Orville AM; Miller MA; Lipscomb JD; Que L
    Biochemistry; 1995 May; 34(20):6649-59. PubMed ID: 7756296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unravelling the Molecular Origin of the Regiospecificity in Extradiol Catechol Dioxygenases.
    Christian GJ; Neese F; Ye S
    Inorg Chem; 2016 Apr; 55(8):3853-64. PubMed ID: 27050565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional and structural relationship of various extradiol aromatic ring-cleavage dioxygenases of Pseudomonas origin.
    Hirose J; Kimura N; Suyama A; Kobayashi A; Hayashida S; Furukawa K
    FEMS Microbiol Lett; 1994 May; 118(3):273-7. PubMed ID: 8020752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.