These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 23897269)

  • 61. In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries.
    Shen L; Yuan C; Luo H; Zhang X; Yang S; Lu X
    Nanoscale; 2011 Feb; 3(2):572-4. PubMed ID: 21076732
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Preparation and characterization of flexible lithium iron phosphate/graphene/cellulose electrode for lithium ion batteries.
    Wang Y; He ZY; Wang YX; Fan C; Liu CR; Peng QL; Chen JJ; Feng ZS
    J Colloid Interface Sci; 2018 Feb; 512():398-403. PubMed ID: 29096099
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Sucrose-assisted loading of LiFePO4 nanoparticles on graphene for high-performance lithium-ion battery cathodes.
    Wu Y; Wen Z; Feng H; Li J
    Chemistry; 2013 Apr; 19(18):5631-6. PubMed ID: 23468054
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Reduced graphene oxide modified Li2FeSiO4/C composite with enhanced electrochemical performance as cathode material for lithium ion batteries.
    Zhang LL; Duan S; Yang XL; Peng G; Liang G; Huang YH; Jiang Y; Ni SB; Li M
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12304-9. PubMed ID: 24195648
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Large-scale fabrication of graphene-wrapped FeF3 nanocrystals as cathode materials for lithium ion batteries.
    Ma R; Lu Z; Wang C; Wang HE; Yang S; Xi L; Chung JC
    Nanoscale; 2013 Jul; 5(14):6338-43. PubMed ID: 23760208
    [TBL] [Abstract][Full Text] [Related]  

  • 66. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell.
    Deb A; Bergmann U; Cairns EJ; Cramer SP
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Functionalized graphene-based cathode for highly reversible lithium-sulfur batteries.
    Kim JW; Ocon JD; Park DW; Lee J
    ChemSusChem; 2014 May; 7(5):1265-73. PubMed ID: 24464910
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Binder-free graphene foams for O2 electrodes of Li-O2 batteries.
    Zhang W; Zhu J; Ang H; Zeng Y; Xiao N; Gao Y; Liu W; Hng HH; Yan Q
    Nanoscale; 2013 Oct; 5(20):9651-8. PubMed ID: 23963594
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Reduced graphene oxide supported highly porous V2O5 spheres as a high-power cathode material for lithium ion batteries.
    Rui X; Zhu J; Sim D; Xu C; Zeng Y; Hng HH; Lim TM; Yan Q
    Nanoscale; 2011 Nov; 3(11):4752-8. PubMed ID: 21989744
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability.
    Wang H; Yang Y; Liang Y; Robinson JT; Li Y; Jackson A; Cui Y; Dai H
    Nano Lett; 2011 Jul; 11(7):2644-7. PubMed ID: 21699259
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A facile route to modify ferrous phosphate and its use as an iron-containing resource for LiFePO4 via a polyol process.
    Li S; Liu X; Mi R; Liu H; Li Y; Lau WM; Mei J
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9449-57. PubMed ID: 24858212
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Tunable morphology synthesis of LiFePO4 nanoparticles as cathode materials for lithium ion batteries.
    Ma Z; Shao G; Fan Y; Wang G; Song J; Liu T
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9236-44. PubMed ID: 24892948
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Energetics and kinetics of li intercalation in irradiated graphene scaffolds.
    Song J; Ouyang B; Medhekar NV
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12968-74. PubMed ID: 24256350
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Synthesis and superior anode performances of TiO2-carbon-rGO composites in lithium-ion batteries.
    Ren Y; Zhang J; Liu Y; Li H; Wei H; Li B; Wang X
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4776-80. PubMed ID: 22900618
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage.
    Su Y; Li S; Wu D; Zhang F; Liang H; Gao P; Cheng C; Feng X
    ACS Nano; 2012 Sep; 6(9):8349-56. PubMed ID: 22931096
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A Ternary Polyaniline/Active Carbon/Lithium Iron Phosphate Composite as Cathode Material for Lithium Ion Battery.
    Wang X; Zhang W; Huang Y; Xia T; Lian Y
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6494-7. PubMed ID: 27427742
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effect of Nanophase Li₃PO₄ and Li₄P₂O
    Liu S; Wang H; Gao J; He J; Yu G; Zhou T
    J Nanosci Nanotechnol; 2018 May; 18(5):3631-3638. PubMed ID: 29442877
    [TBL] [Abstract][Full Text] [Related]  

  • 78. In situ nitrogenated graphene-few-layer WS2 composites for fast and reversible Li+ storage.
    Chen D; Ji G; Ding B; Ma Y; Qu B; Chen W; Lee JY
    Nanoscale; 2013 Sep; 5(17):7890-6. PubMed ID: 23851576
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Recycling bacteria for the synthesis of LiMPO4 (M = Fe, Mn) nanostructures for high-power lithium batteries.
    Zhou Y; Yang D; Zeng Y; Zhou Y; Ng WJ; Yan Q; Fong E
    Small; 2014 Oct; 10(19):3997-4002. PubMed ID: 24930375
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Investigation of the Phase Transition Mechanism in LiFePO₄ Cathode Using In Situ Raman Spectroscopy and 2D Correlation Spectroscopy during Initial Cycle.
    Park Y; Kim SM; Jin S; Lee SM; Noda I; Jung YM
    Molecules; 2019 Jan; 24(2):. PubMed ID: 30646621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.