These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23897434)

  • 1. Biomechanical and injury response of human foot and ankle under complex loading.
    Shin J; Untaroiu CD
    J Biomech Eng; 2013 Oct; 135(10):101008. PubMed ID: 23897434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A finite element model of the foot and ankle for automotive impact applications.
    Shin J; Yue N; Untaroiu CD
    Ann Biomed Eng; 2012 Dec; 40(12):2519-31. PubMed ID: 22695987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The axial injury tolerance of the human foot/ankle complex and the effect of Achilles tension.
    Funk JR; Crandall JR; Tourret LJ; MacMahon CB; Bass CR; Patrie JT; Khaewpong N; Eppinger RH
    J Biomech Eng; 2002 Dec; 124(6):750-7. PubMed ID: 12596644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are drivers more likely to injure their right or left foot in a frontal car crash: a crash and biomechanical investigation.
    Assal M; Huber P; Tencer AF; Rohr E; Mock C; Kaufman R
    Annu Proc Assoc Adv Automot Med; 2002; 46():273-88. PubMed ID: 12361513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Survival Model for Foot and Leg High Rate Axial Impact Injury Data.
    Bailey AM; McMurry TL; Poplin GS; Salzar RS; Crandall JR
    Traffic Inj Prev; 2015; 16 Suppl 2():S96-S102. PubMed ID: 26436249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Case series analysis of hindfoot injuries sustained by drivers in frontal motor vehicle crashes.
    Ye X; Funk J; Forbes A; Hurwitz S; Shaw G; Crandall J; Freeth R; Michetti C; Rudd R; Scarboro M
    Forensic Sci Int; 2015 Sep; 254():18-25. PubMed ID: 26183693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical properties of human cadaveric ankle-subtalar joints in quasi-static loading.
    Parenteau CS; Viano DC; Petit PY
    J Biomech Eng; 1998 Feb; 120(1):105-11. PubMed ID: 9675688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Foot-ankle complex injury risk curves using calcaneus bone mineral density data.
    Yoganandan N; Chirvi S; Voo L; DeVogel N; Pintar FA; Banerjee A
    J Mech Behav Biomed Mater; 2017 Aug; 72():246-251. PubMed ID: 28505593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of ankle posture on the load pathway through the hindfoot.
    Smolen C; Quenneville CE
    Proc Inst Mech Eng H; 2016 Nov; 230(11):1024-1035. PubMed ID: 27694402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biomechanical investigation of ankle injury under excessive external foot rotation in the human cadaver.
    Wei F; Villwock MR; Meyer EG; Powell JW; Haut RC
    J Biomech Eng; 2010 Sep; 132(9):091001. PubMed ID: 20815635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A numerical investigation on the variation in hip injury tolerance with occupant posture during frontal collisions.
    Yue N; Untaroiu CD
    Traffic Inj Prev; 2014; 15(5):513-22. PubMed ID: 24678575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical treatment of traumatic foot and ankle injuries with the use of foot orthotics.
    Tomaro JE; Butterfield SL
    J Orthop Sports Phys Ther; 1995 Jun; 21(6):373-80. PubMed ID: 7655481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the effectiveness of toe board energy-absorbing material for foot, ankle, and lower leg injury reduction.
    Patalak JP; Stitzel JD
    Traffic Inj Prev; 2018 Feb; 19(2):195-200. PubMed ID: 28696780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anthropometric specifications, development, and evaluation of EvaRID--a 50th percentile female rear impact finite element dummy model.
    Carlsson A; Chang F; Lemmen P; Kullgren A; Schmitt KU; Linder A; Svensson MY
    Traffic Inj Prev; 2014; 15(8):855-65. PubMed ID: 24484526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Injury Risk Function for the Leg, Foot, and Ankle Exposed to Axial Impact Loading Using Force and Impulse.
    Bailey AM; McMurry TL; Salzar RS; Crandall JR
    J Biomech Eng; 2019 Feb; 141(2):. PubMed ID: 30453328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A finite element model of the lower limb for simulating automotive impacts.
    Untaroiu CD; Yue N; Shin J
    Ann Biomed Eng; 2013 Mar; 41(3):513-26. PubMed ID: 23180026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of Fluid Dynamics in Distributing Ankle Stresses in Anatomic and Injured States.
    Hamid KS; Scott AT; Nwachukwu BU; Danelson KA
    Foot Ankle Int; 2016 Dec; 37(12):1343-1349. PubMed ID: 27530984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical examination of the foot and ankle.
    Young CC; Niedfeldt MW; Morris GA; Eerkes KJ
    Prim Care; 2005 Mar; 32(1):105-32. PubMed ID: 15831315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Foot-Ankle-Leg Injuries in Various Under-Foot Impact Loading Environments With a Human Active Lower Limb Model.
    Huang J; Huang C; Mo F
    J Biomech Eng; 2022 Jan; 144(1):. PubMed ID: 34382656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Foot and ankle biomechanics.
    Towers JD; Deible CT; Golla SK
    Semin Musculoskelet Radiol; 2003 Mar; 7(1):67-74. PubMed ID: 12888945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.