BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 23897471)

  • 1. Structure determination of the functional domain interaction of a chimeric nonribosomal peptide synthetase from a challenging crystal with noncrystallographic translational symmetry.
    Sundlov JA; Gulick AM
    Acta Crystallogr D Biol Crystallogr; 2013 Aug; 69(Pt 8):1482-92. PubMed ID: 23897471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional investigation of the intermolecular interaction between NRPS adenylation and carrier protein domains.
    Sundlov JA; Shi C; Wilson DJ; Aldrich CC; Gulick AM
    Chem Biol; 2012 Feb; 19(2):188-98. PubMed ID: 22365602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the EntB multidomain nonribosomal peptide synthetase and functional analysis of its interaction with the EntE adenylation domain.
    Drake EJ; Nicolai DA; Gulick AM
    Chem Biol; 2006 Apr; 13(4):409-19. PubMed ID: 16632253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of PA1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains.
    Mitchell CA; Shi C; Aldrich CC; Gulick AM
    Biochemistry; 2012 Apr; 51(15):3252-63. PubMed ID: 22452656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the linker region joining the adenylation and carrier protein domains of the modular nonribosomal peptide synthetases.
    Miller BR; Sundlov JA; Drake EJ; Makin TA; Gulick AM
    Proteins; 2014 Oct; 82(10):2691-702. PubMed ID: 24975514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of the termination module of a nonribosomal peptide synthetase.
    Tanovic A; Samel SA; Essen LO; Marahiel MA
    Science; 2008 Aug; 321(5889):659-63. PubMed ID: 18583577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular impact of covalent modifications on nonribosomal peptide synthetase carrier protein communication.
    Goodrich AC; Meyers DJ; Frueh DP
    J Biol Chem; 2017 Jun; 292(24):10002-10013. PubMed ID: 28455448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Biology of Nonribosomal Peptide Synthetases.
    Miller BR; Gulick AM
    Methods Mol Biol; 2016; 1401():3-29. PubMed ID: 26831698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissection of the EntF condensation domain boundary and active site residues in nonribosomal peptide synthesis.
    Roche ED; Walsh CT
    Biochemistry; 2003 Feb; 42(5):1334-44. PubMed ID: 12564937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design, Synthesis, and Biophysical Evaluation of Mechanism-Based Probes for Condensation Domains of Nonribosomal Peptide Synthetases.
    Shi C; Miller BR; Alexander EM; Gulick AM; Aldrich CC
    ACS Chem Biol; 2020 Jul; 15(7):1813-1819. PubMed ID: 32568518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture.
    Miller BR; Drake EJ; Shi C; Aldrich CC; Gulick AM
    J Biol Chem; 2016 Oct; 291(43):22559-22571. PubMed ID: 27597544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand-induced conformational rearrangements promote interaction between the Escherichia coli enterobactin biosynthetic proteins EntE and EntB.
    Khalil S; Pawelek PD
    J Mol Biol; 2009 Oct; 393(3):658-71. PubMed ID: 19699210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural characterization of a PCP-R didomain from an archaeal nonribosomal peptide synthetase reveals novel interdomain interactions.
    Deshpande S; Altermann E; Sarojini V; Lott JS; Lee TV
    J Biol Chem; 2021; 296():100432. PubMed ID: 33610550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The EntF and EntE adenylation domains of Escherichia coli enterobactin synthetase: sequestration and selectivity in acyl-AMP transfers to thiolation domain cosubstrates.
    Ehmann DE; Shaw-Reid CA; Losey HC; Walsh CT
    Proc Natl Acad Sci U S A; 2000 Mar; 97(6):2509-14. PubMed ID: 10688898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures of the first condensation domain of CDA synthetase suggest conformational changes during the synthetic cycle of nonribosomal peptide synthetases.
    Bloudoff K; Rodionov D; Schmeing TM
    J Mol Biol; 2013 Sep; 425(17):3137-50. PubMed ID: 23756159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase.
    Reimer JM; Aloise MN; Harrison PM; Schmeing TM
    Nature; 2016 Jan; 529(7585):239-42. PubMed ID: 26762462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate Detection of Adenylation Domain Functions in Nonribosomal Peptide Synthetases by an Enzyme-linked Immunosorbent Assay System Using Active Site-directed Probes for Adenylation Domains.
    Ishikawa F; Miyamoto K; Konno S; Kasai S; Kakeya H
    ACS Chem Biol; 2015 Dec; 10(12):2816-26. PubMed ID: 26474351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Structural Data Reveal the Motion of Carrier Proteins in Nonribosomal Peptide Synthesis.
    Kittilä T; Mollo A; Charkoudian LK; Cryle MJ
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):9834-40. PubMed ID: 27435901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of the adenylation domain from an ε-poly-l-lysine synthetase provides molecular mechanism for substrate specificity.
    Okamoto T; Yamanaka K; Hamano Y; Nagano S; Hino T
    Biochem Biophys Res Commun; 2022 Mar; 596():43-48. PubMed ID: 35108653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precise Probing of Residue Roles by NRPS Code Swapping: Mutation, Enzymatic Characterization, Modeling, and Substrate Promiscuity of Aryl Acid Adenylation Domains.
    Ishikawa F; Nohara M; Nakamura S; Nakanishi I; Tanabe G
    Biochemistry; 2020 Feb; 59(4):351-363. PubMed ID: 31894971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.